Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
Freie Universität Berlin, Physics Department, Theoretical Molecular Biophysics Group, D-14195 Berlin, Germany.
Phys Chem Chem Phys. 2024 Sep 18;26(36):24090-24108. doi: 10.1039/d4cp02611j.
Inward proton pumping is a relatively new function for microbial rhodopsins, retinal-binding light-driven membrane proteins. So far, it has been demonstrated for two unrelated subgroups of microbial rhodopsins, xenorhodopsins and schizorhodopsins. A number of recent studies suggest unique retinal-protein interactions as being responsible for the reversed direction of proton transport in the latter group. Here, we use solid-state NMR to analyze the retinal chromophore environment and configuration in an inward proton-pumping Antarctic schizorhodopsin. Using fully C-labeled retinal, we have assigned chemical shifts for every carbon atom and, assisted by structure modelling and molecular dynamics simulations, made a comparison with well-studied outward proton pumps, identifying locations of the unique protein-chromophore interactions for this functional subclass of microbial rhodopsins. Both the NMR results and molecular dynamics simulations point to the distinctive polar environment in the proximal part of the retinal, which may result in a hydration pattern dramatically different from that of the outward proton pumps, causing the reversed proton transport.
质子内泵作用是微生物视紫红质(一种结合视黄醛的光驱动跨膜蛋白)的一个相对较新的功能。到目前为止,它已经在两个不相关的微生物视紫红质亚群——外质体视紫红质和分裂视紫红质中得到了证实。最近的一些研究表明,独特的视蛋白-视黄醛相互作用是导致后一组质子转运方向反转的原因。在这里,我们使用固态 NMR 来分析向内质子泵南极分裂视紫红质中的视黄醛生色团环境和构象。使用完全 C 标记的视黄醛,我们为每个碳原子分配了化学位移,并通过结构建模和分子动力学模拟,与研究充分的外向质子泵进行了比较,确定了这个微生物视紫红质功能亚类中独特的蛋白-生色团相互作用的位置。NMR 结果和分子动力学模拟都指向了视黄醛近端部分独特的极性环境,这可能导致与外向质子泵显著不同的水合模式,从而导致质子的反向转运。