Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada.
Department of Psychiatry, University of Toronto, Toronto, Canada.
Elife. 2023 Apr 21;12:e83232. doi: 10.7554/eLife.83232.
A compelling way to disentangle the complexity of the brain is to measure the effects of spatially and temporally synchronized systematic perturbations. In humans, this can be non-invasively achieved by combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG). Spatiotemporally complex and long-lasting TMS-EEG evoked potential (TEP) waveforms are believed to result from recurrent, re-entrant activity that propagates broadly across multiple cortical and subcortical regions, dispersing from and later re-converging on, the primary stimulation site. However, if we loosely understand the TEP of a TMS-stimulated region as the impulse response function of a noisy underdamped harmonic oscillator, then multiple later activity components (waveform peaks) should be expected even for an isolated network node in the complete absence of recurrent inputs. Thus emerges a critically important question for basic and clinical research on human brain dynamics: what parts of the TEP are due to purely local dynamics, what parts are due to reverberant, re-entrant network activity, and how can we distinguish between the two? To disentangle this, we used source-localized TMS-EEG analyses and whole-brain connectome-based computational modelling. Results indicated that recurrent network feedback begins to drive TEP responses from 100 ms post-stimulation, with earlier TEP components being attributable to local reverberatory activity within the stimulated region. Subject-specific estimation of neurophysiological parameters additionally indicated an important role for inhibitory GABAergic neural populations in scaling cortical excitability levels, as reflected in TEP waveform characteristics. The novel discoveries and new software technologies introduced here should be of broad utility in basic and clinical neuroscience research.
一种令人信服的方法来理清大脑的复杂性是测量空间和时间同步的系统扰动的影响。在人类中,可以通过结合经颅磁刺激(TMS)和脑电图(EEG)来非侵入性地实现这一点。时空复杂且持久的 TMS-EEG 诱发电位(TEP)波形被认为是由广泛传播到多个皮质和皮质下区域的递归、再进入活动引起的,从初级刺激部位分散开来,然后重新集中。然而,如果我们将 TMS 刺激区域的 TEP 松散地理解为噪声欠阻尼谐振子的脉冲响应函数,那么即使在没有递归输入的情况下,对于孤立的网络节点,也应该预期到多个后期活动成分(波形峰)。因此,对于人类大脑动力学的基础和临床研究,出现了一个至关重要的问题:TEP 的哪些部分归因于纯粹的局部动力学,哪些部分归因于回荡、再进入的网络活动,我们如何区分两者?为了理清这一点,我们使用了基于源定位的 TMS-EEG 分析和全脑连接组计算模型。结果表明,递归网络反馈从刺激后 100 毫秒开始驱动 TEP 响应,较早的 TEP 成分归因于刺激区域内的局部回荡活动。神经生理参数的个体特异性估计还表明,抑制性 GABA 能神经群体在调节皮质兴奋性水平方面发挥着重要作用,这反映在 TEP 波形特征中。这里介绍的新发现和新软件技术应该在基础和临床神经科学研究中具有广泛的用途。