Department of Industrial and Systems Engineering, University of Wisconsin- Madison, Madison, WI, United States of America.
Population Health Sciences, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, WI, United States of America.
PLoS One. 2023 Apr 21;18(4):e0284611. doi: 10.1371/journal.pone.0284611. eCollection 2023.
As agent-based models (ABMs) are increasingly used for modeling infectious diseases, model validation is becoming more crucial. In this study, we present an alternate approach to validating hospital ABMs that focuses on replicating hospital-specific conditions and proposes a new metric for validating the social-environmental network structure of ABMs. We adapted an established ABM representing Clostridioides difficile infection (CDI) spread in a generic hospital to a 426-bed Midwestern academic hospital. We incorporated hospital-specific layout, agent behaviors, and input parameters estimated from primary hospital data into the model, referred to as H-ABM. We compared the predicted CDI rate against the observed rate from 2013-2018. We used colonization pressure, a measure of nearby infectious agents, to validate the socio-environmental agent networks in the ABM. Finally, we conducted additional experiments to compare the performance of individual infection control interventions in the H-ABM and the generic model. We find that the H-ABM is able to replicate CDI trends during 2013-2018, including a roughly 46% drop during a period of greater infection control investment. High CDI burden in socio-environmental networks was associated with a significantly increased risk of C. difficile colonization or infection (Risk ratio: 1.37; 95% CI: [1.17, 1.59]). Finally, we found that several high-impact infection control interventions have diminished impact in the H-ABM. This study presents an alternate approach to validation of ABMs when large-scale calibration is not appropriate for specific settings and proposes a new metric for validating socio-environmental network structure of ABMs. Our findings also demonstrate the utility of hospital-specific modeling.
随着基于代理的模型 (ABM) 越来越多地用于传染病建模,模型验证变得越来越重要。在这项研究中,我们提出了一种替代方法来验证医院 ABM,该方法侧重于复制医院特有的条件,并提出了一种新的指标来验证 ABM 的社会环境网络结构。我们改编了一个现有的代表艰难梭菌感染 (CDI) 在普通医院传播的 ABM,使其适用于中西部一所 426 床位的学术医院。我们将医院特定的布局、代理行为和从主要医院数据中估计的输入参数纳入模型中,称为 H-ABM。我们将预测的 CDI 率与 2013-2018 年的观察率进行了比较。我们使用定植压力(一种衡量附近感染源的指标)来验证 ABM 中的社会环境代理网络。最后,我们进行了额外的实验,比较了 H-ABM 和通用模型中个别感染控制干预措施的性能。我们发现 H-ABM 能够复制 2013-2018 年的 CDI 趋势,包括在感染控制投资增加期间,CDI 下降了约 46%。社会环境网络中 CDI 负担较高与艰难梭菌定植或感染的风险显著增加相关(风险比:1.37;95%置信区间:[1.17,1.59])。最后,我们发现几种高影响力的感染控制干预措施在 H-ABM 中的影响减弱。本研究提出了一种替代方法来验证 ABM,当大规模校准不适用于特定环境时,该方法提出了一种新的指标来验证 ABM 的社会环境网络结构。我们的研究结果还证明了医院特定建模的实用性。