Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States.
Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada.
J Phys Chem A. 2023 May 4;127(17):3906-3913. doi: 10.1021/acs.jpca.3c01731. Epub 2023 Apr 21.
Cryo-electron microscopy data are becoming more prevalent and accessible at higher resolution levels, leading to the development of new computational tools to determine the atomic structure of macromolecules. However, while existing tools adapted from X-ray crystallography are suitable for the highest-resolution maps, new tools are needed for lower-resolution levels and to account for map heterogeneity. In this article, we introduce CryoFold 2.0, an integrative physics-based approach that combines Bayesian inference and the ability to handle multiple data sources with the molecular dynamics flexible fitting (MDFF) approach to determine the structures of macromolecules by using cryo-EM data. CryoFold 2.0 is incorporated into the MELD (modeling employing limited data) plugin, resulting in a pipeline that is more computationally efficient and accurate than running MELD or MDFF alone. The approach requires fewer computational resources and shorter simulation times than the original CryoFold, and it minimizes manual intervention. We demonstrate the effectiveness of the approach on eight different systems, highlighting its various benefits.
低温电子显微镜数据在更高分辨率水平上变得越来越普及和易于获取,这导致了新的计算工具的发展,以确定大分子的原子结构。然而,虽然现有的工具是从 X 射线晶体学改编而来的,适用于最高分辨率的图谱,但需要新的工具来处理较低分辨率的图谱,并考虑到图谱的异质性。在本文中,我们介绍了 CryoFold 2.0,这是一种基于物理的综合方法,它结合了贝叶斯推断和处理多个数据源的能力,以及分子动力学灵活拟合 (MDFF) 方法,通过使用 cryo-EM 数据来确定大分子的结构。CryoFold 2.0 被整合到 MELD(有限数据建模)插件中,形成了一个比单独运行 MELD 或 MDFF 更高效、更准确的流水线。该方法比原始的 CryoFold 需要更少的计算资源和更短的模拟时间,并且最大限度地减少了人工干预。我们在八个不同的系统上展示了该方法的有效性,突出了其各种优势。