Suppr超能文献

蛋白质组学发现化学探针,可扰乱人细胞中的蛋白质复合物。

Proteomic discovery of chemical probes that perturb protein complexes in human cells.

机构信息

Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.

Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.

出版信息

Mol Cell. 2023 May 18;83(10):1725-1742.e12. doi: 10.1016/j.molcel.2023.03.026. Epub 2023 Apr 20.

Abstract

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.

摘要

大多数人类蛋白质缺乏化学探针,因此引入了几种大规模且可推广的小分子结合测定法来解决这个问题。然而,在这种“先结合后筛选”的测定法中发现的化合物如何影响蛋白质功能,通常仍不清楚。在这里,我们描述了一种“先功能后结合”的蛋白质组学策略,该策略使用尺寸排阻色谱(SEC)来评估亲电化合物对人细胞中蛋白质复合物的全局影响。将 SEC 数据与靶向半胱氨酸的基于活性的蛋白质分析(ABPP)整合,可识别由特定位点配体事件引起的蛋白质-蛋白质相互作用的变化,包括 PSME1 和 SF3B1 中半胱氨酸的立体选择性结合,分别破坏 PA28 蛋白酶体调节复合物并稳定剪接体的动态状态。因此,我们的研究结果表明,对亲电化合物的聚焦文库进行多维蛋白质组学分析如何加速发现对人细胞中蛋白质复合物具有特定功能影响的化学探针。

相似文献

1
Proteomic discovery of chemical probes that perturb protein complexes in human cells.
Mol Cell. 2023 May 18;83(10):1725-1742.e12. doi: 10.1016/j.molcel.2023.03.026. Epub 2023 Apr 20.
2
Applications of Reactive Cysteine Profiling.
Curr Top Microbiol Immunol. 2019;420:375-417. doi: 10.1007/82_2018_120.
3
Chemical proteomic identification of functional cysteines with atypical electrophile reactivities.
Tetrahedron Lett. 2021 Mar 16;67. doi: 10.1016/j.tetlet.2021.152861. Epub 2021 Feb 4.
6
Redirecting the pioneering function of FOXA1 with covalent small molecules.
Mol Cell. 2024 Nov 7;84(21):4125-4141.e10. doi: 10.1016/j.molcel.2024.09.024. Epub 2024 Oct 15.
7
Multi-tiered chemical proteomic maps of tryptoline acrylamide-protein interactions in cancer cells.
Nat Chem. 2024 Oct;16(10):1592-1604. doi: 10.1038/s41557-024-01601-1. Epub 2024 Aug 13.
8
Multiplexed proteomic profiling of cysteine reactivity and ligandability in human T cells.
STAR Protoc. 2021 Apr 8;2(2):100458. doi: 10.1016/j.xpro.2021.100458. eCollection 2021 Jun 18.
9
Proteome-wide covalent ligand discovery in native biological systems.
Nature. 2016 Jun 23;534(7608):570-4. doi: 10.1038/nature18002. Epub 2016 Jun 15.
10
Assigning functionality to cysteines by base editing of cancer dependency genes.
Nat Chem Biol. 2023 Nov;19(11):1320-1330. doi: 10.1038/s41589-023-01428-w. Epub 2023 Oct 2.

引用本文的文献

1
Cysteine reactivity profiling identifies host regulators of replication in human macrophages.
bioRxiv. 2025 Sep 3:2025.08.30.673236. doi: 10.1101/2025.08.30.673236.
2
3
Tissue-Specific Biotinylation for Interorgan Communication.
Methods Mol Biol. 2025;2953:231-241. doi: 10.1007/978-1-0716-4694-6_15.
4
Complexoform-restricted covalent TRMT112 ligands that allosterically agonize METTL5.
bioRxiv. 2025 May 25:2025.05.25.655995. doi: 10.1101/2025.05.25.655995.
6
Proteomic Ligandability Maps of Phosphorus(V) Stereoprobes Identify Covalent TLCD1 Inhibitors.
bioRxiv. 2025 Jan 31:2025.01.31.635883. doi: 10.1101/2025.01.31.635883.
7
Discovery of DCAF16 Binders for Targeted Protein Degradation.
ACS Chem Biol. 2025 Feb 21;20(2):479-488. doi: 10.1021/acschembio.4c00799. Epub 2025 Jan 30.
9
Development of an FKBP12-recruiting chemical-induced proximity DNA-encoded library and its application to discover an autophagy potentiator.
Cell Chem Biol. 2025 Mar 20;32(3):498-510.e35. doi: 10.1016/j.chembiol.2024.12.002. Epub 2025 Jan 2.
10
SF3B1 thermostability as an assay for splicing inhibitor interactions.
J Biol Chem. 2025 Feb;301(2):108135. doi: 10.1016/j.jbc.2024.108135. Epub 2024 Dec 24.

本文引用的文献

1
Mechanisms of the RNA helicases DDX42 and DDX46 in human U2 snRNP assembly.
Nat Commun. 2023 Feb 17;14(1):897. doi: 10.1038/s41467-023-36489-x.
2
Metadensity: a background-aware python pipeline for summarizing CLIP signals on various transcriptomic sites.
Bioinform Adv. 2022 Nov 10;2(1):vbac083. doi: 10.1093/bioadv/vbac083. eCollection 2022.
3
Chemoproteomic profiling to identify activity changes and functional inhibitors of DNA-binding proteins.
Cell Chem Biol. 2022 Nov 17;29(11):1639-1648.e4. doi: 10.1016/j.chembiol.2022.10.008. Epub 2022 Nov 9.
4
Targeted Protein Degradation by Electrophilic PROTACs that Stereoselectively and Site-Specifically Engage DCAF1.
J Am Chem Soc. 2022 Oct 12;144(40):18688-18699. doi: 10.1021/jacs.2c08964. Epub 2022 Sep 28.
5
The DEAD box RNA helicase DDX42 is an intrinsic inhibitor of positive-strand RNA viruses.
EMBO Rep. 2022 Nov 7;23(11):e54061. doi: 10.15252/embr.202154061. Epub 2022 Sep 26.
6
Selective inhibitors of JAK1 targeting an isoform-restricted allosteric cysteine.
Nat Chem Biol. 2022 Dec;18(12):1388-1398. doi: 10.1038/s41589-022-01098-0. Epub 2022 Sep 12.
7
Selective inhibitors of SARM1 targeting an allosteric cysteine in the autoregulatory ARM domain.
Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2208457119. doi: 10.1073/pnas.2208457119. Epub 2022 Aug 22.
8
A proteome-wide atlas of lysine-reactive chemistry.
Nat Chem. 2021 Nov;13(11):1081-1092. doi: 10.1038/s41557-021-00765-4. Epub 2021 Sep 9.
9
Fragment-based covalent ligand discovery.
RSC Chem Biol. 2021 Feb 9;2(2):354-367. doi: 10.1039/d0cb00222d. eCollection 2021 Apr 1.
10
DNA-Encoded Chemical Libraries: A Comprehensive Review with Succesful Stories and Future Challenges.
ACS Pharmacol Transl Sci. 2021 Jun 14;4(4):1265-1279. doi: 10.1021/acsptsci.1c00118. eCollection 2021 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验