Suppr超能文献

CrAlN 与对 M[Formula: see text]AX 家族中超导体最高温度的探索。

Cr[Formula: see text]AlN and the search for the highest temperature superconductor in the M[Formula: see text]AX family.

机构信息

Department of Physics, University of York, York, YO10 5DD UK.

Sakarya University, Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), 54187 Sakarya, Turkey.

出版信息

Sci Rep. 2023 Apr 21;13(1):6576. doi: 10.1038/s41598-023-33517-0.

Abstract

We have developed a high-throughput computational method to predict the superconducting transition temperature in stable hexagonal M[Formula: see text]AX phases, and applied it to all the known possible choices for M (M: Sc, Ti, V, Cr, Mn, Fe, Y, Zr, Nb, Mo, Lu, Hf and Ta). We combine this with the best candidates for A (A: Al, Cu, Ge and Sn ) and X (X: C and N) from our previous work, and predict T[Formula: see text] for 60 M[Formula: see text]AX-phase materials, 53 of which have never been studied before. From all of these, we identify Cr[Formula: see text]AlN as the best candidate for the highest T[Formula: see text], and confirm its high T[Formula: see text] with more detailed density functional theory electron-phonon coupling calculations. Our detailed calculations predict [Formula: see text] = 14.8 K for Cr[Formula: see text]AlN, which is significantly higher than any [Formula: see text] value known or predicted for any material in the M[Formula: see text]AX family to date.

摘要

我们开发了一种高通量的计算方法来预测稳定的六方 M[Formula: see text]AX 相中的超导转变温度,并将其应用于所有已知的 M(M:Sc、Ti、V、Cr、Mn、Fe、Y、Zr、Nb、Mo、Lu、Hf 和 Ta)的可能选择。我们将其与我们之前工作中 A(A:Al、Cu、Ge 和 Sn)和 X(X:C 和 N)的最佳候选物结合起来,并预测了 60 种 M[Formula: see text]AX 相材料的 T[Formula: see text],其中 53 种以前从未研究过。在所有这些材料中,我们确定 Cr[Formula: see text]AlN 是 T[Formula: see text]最高的最佳候选物,并通过更详细的密度泛函理论电子声子耦合计算证实了其高 T[Formula: see text]。我们的详细计算预测 Cr[Formula: see text]AlN 的 T[Formula: see text]为 14.8 K,这明显高于迄今为止 M[Formula: see text]AX 族中任何已知或预测的材料的任何 T[Formula: see text]值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1caa/10121671/77225604b5c4/41598_2023_33517_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验