Center for Anxiety and Related Disorders, Boston University.
Center for Anxiety and Related Disorders, Boston University.
Behav Ther. 2023 May;54(3):461-475. doi: 10.1016/j.beth.2022.11.004. Epub 2022 Dec 7.
A growing literature is devoted to understanding and predicting heterogeneity in response to cognitive behavioral therapy (CBT), including using supervised machine learning to develop prognostic models that could be used to inform treatment planning. The current study developed CBT prognostic models using data from a broad dimensionally oriented pretreatment assessment (324 predictors) of 1,210 outpatients with internalizing psychopathology. Super learning was implemented to develop prognostic indices for three outcomes assessed at 12-month follow-up: principal diagnosis improvement (attained by 65.8% of patients), principal diagnosis remission (56.8%), and transdiagnostic full remission (14.3%). The models for principal diagnosis remission and transdiagnostic remission performed best (AUROCs = 0.71-0.73). Calibration was modest for all three models. Three-quarters (77.3%) of patients in the top tertile of the predicted probability distribution achieved principal diagnosis remission, compared to 35.0% in the bottom tertile. One-third (35.3%) of patients in the top two deciles of predicted probabilities for transdiagnostic complete remission achieved this outcome, compared to 2.7% in the bottom tertile. Key predictors included principal diagnosis severity, social anxiety diagnosis/severity, hopelessness, temperament, and global impairment. While additional work is needed to improve performance, integration of CBT prognostic models ultimately could lead to more effective and efficient treatment of patients with internalizing psychopathology.
越来越多的文献致力于理解和预测认知行为疗法(CBT)的反应异质性,包括使用监督机器学习来开发预后模型,以便为治疗计划提供信息。本研究使用 1210 名有内化性精神病理学的门诊患者的广泛维度定向预处理评估(324 个预测因子)的数据开发了 CBT 预后模型。采用超级学习方法为三种预后结局制定了预测指标,这些结局是在 12 个月的随访中评估的:主要诊断改善(65.8%的患者达到)、主要诊断缓解(56.8%)和跨诊断完全缓解(14.3%)。主要诊断缓解和跨诊断缓解模型的性能最佳(AUROC 值为 0.71-0.73)。所有三种模型的校准效果都比较适度。与底部三分位数的 35.0%相比,预测概率分布前三分位数的 77.3%的患者达到主要诊断缓解。与底部三分位数的 2.7%相比,预测跨诊断完全缓解概率前两十分位数的 35.3%的患者达到该结果。主要预测因子包括主要诊断严重程度、社交焦虑症诊断/严重程度、绝望感、气质和整体受损。虽然还需要进一步的工作来提高性能,但 CBT 预后模型的整合最终可能会导致更有效和更高效地治疗有内化性精神病理学的患者。