Hilbert Kevin, Jacobi Tanja, Kunas Stefanie L, Elsner Björn, Reuter Benedikt, Lueken Ulrike, Kathmann Norbert
Faculty of Life Sciences, Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
Psychother Res. 2021 Jan;31(1):52-62. doi: 10.1080/10503307.2020.1839140. Epub 2020 Nov 11.
Machine learning models predicting treatment outcomes for individual patients may yield high clinical utility. However, few studies tested the utility of easy to acquire and low-cost sociodemographic and clinical data. In previous work, we reported significant predictions still insufficient for immediate clinical use in a sample with broad diagnostic spectrum. We here examined whether predictions will improve in a diagnostically more homogeneous yet large and naturalistic obsessive-compulsive disorder (OCD) sample. We used sociodemographic and clinical data routinely acquired during CBT treatment of = 533 OCD subjects in a specialized outpatient clinic. Remission was predicted with 65% ( = 0.001) balanced accuracy on unseen data for the best model. Higher OCD symptom severity predicted non-remission, while higher age of onset of first OCD symptoms and higher socioeconomic status predicted remission. For dimensional change, prediction achieved = 0.31 ( = 0.001) between predicted and actual values. The comparison with our previous work suggests that predictions within a diagnostically homogeneous sample, here OCD, are not per se superior to a more diverse sample including several diagnostic groups. Using refined psychological predictors associated with disorder etiology and maintenance or adding further data modalities as neuroimaging or ecological momentary assessments are promising in order to further increase prediction accuracy.
预测个体患者治疗结果的机器学习模型可能具有较高的临床实用性。然而,很少有研究测试易于获取且低成本的社会人口统计学和临床数据的实用性。在之前的工作中,我们报告称,在一个具有广泛诊断范围的样本中,显著的预测结果仍不足以立即用于临床。我们在此研究了在一个诊断上更同质但规模大且自然的强迫症(OCD)样本中,预测是否会有所改善。我们使用了在一家专门的门诊诊所对533名强迫症患者进行认知行为疗法(CBT)治疗期间常规获取的社会人口统计学和临床数据。对于最佳模型,在未见数据上预测缓解的平衡准确率为65%(P = 0.001)。强迫症症状严重程度越高预测未缓解,而首次出现强迫症症状的年龄越大以及社会经济地位越高则预测缓解。对于维度变化,预测值与实际值之间的相关性为r = 0.31(P = 0.001)。与我们之前的工作相比表明,在诊断上同质的样本(此处为强迫症样本)中的预测本身并不优于包含多个诊断组的更多样化样本。使用与疾病病因和维持相关的精细心理预测指标或添加进一步的数据模式(如神经影像学或生态瞬时评估)有望进一步提高预测准确性。