Aliyeva Vusala A, Gurbanov Atash V, Mahmoud Abdallah G, Gomila Rosa M, Frontera Antonio, Mahmudov Kamran T, Pombeiro Armando J L
Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
Excellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan.
Faraday Discuss. 2023 Aug 11;244(0):77-95. doi: 10.1039/d2fd00160h.
The chalcogen bond (ChB) is a noncovalent attraction between an electrophilic chalcogen atom and a nucleophilic (Nu) region in the same (intramolecular) or another (intermolecular) molecular entity: R-Ch⋯Nu (Ch = O, S, Se or Te; R = substituents; Nu = nucleophile). ChB is comparable to the hydrogen and halogen bonds both in terms of strengths and directionality. However, in contrast to the monovalent halogen atoms, usually the divalent or tetravalent chalcogen atoms are able to display more than one electrophilic centre (on account of the existence of two or three species bonded to the chalcogen atom), which provides an additional opportunity in the use of this type of noncovalent binding in synthetic operations. In this work, the role of ChB at the secondary coordination sphere of metal complexes through copper(II)-mediated activation of dioxygen or of one nitrile group of a 1,2,5-selenadiazole-3,4-dicarbonitrile ligand to form a carbimidate or an imino-carboxylic acid is demonstrated. DFT calculations allowed evaluation of the strength of the ChBs and proved their relevant structure directing role in the solid state architectures. The effect of metal-coordination on the σ-hole opposite to the coordinated SeO bond has been analysed using molecular electrostatic potential (MEP) surfaces and explains the greater ability of the coordinated selenoxide derivatives to form strong ChBs.
硫族元素键(ChB)是亲电硫族元素原子与同一(分子内)或另一个(分子间)分子实体中的亲核(Nu)区域之间的非共价吸引力:R-Ch⋯Nu(Ch = O、S、Se或Te;R = 取代基;Nu = 亲核试剂)。ChB在强度和方向性方面与氢键和卤键相当。然而,与单价卤素原子不同,通常二价或四价硫族元素原子能够显示不止一个亲电中心(由于存在与硫族元素原子键合的两种或三种物种),这为在合成操作中使用这种类型的非共价键提供了额外的机会。在这项工作中,展示了通过铜(II)介导的双氧或1,2,5-硒二唑-3,4-二腈配体的一个腈基活化形成氨基甲酸酯或亚氨基羧酸,硫族元素键在金属配合物二级配位球中的作用。密度泛函理论(DFT)计算允许评估硫族元素键的强度,并证明了它们在固态结构中相关的结构导向作用。使用分子静电势(MEP)表面分析了金属配位对与配位的SeO键相对的σ-空穴的影响,并解释了配位的亚硒酸酯衍生物形成强硫族元素键的更强能力。