Suppr超能文献

模拟人类大脑皮质类器官中的过度兴奋:氧/葡萄糖剥夺是最有效的刺激因素。

Modelling hyperexcitability in human cerebral cortical organoids: Oxygen/glucose deprivation most effective stimulant.

作者信息

Saleem Afifa, Santos Alexandra C, Aquilino Mark S, Sivitilli Adam A, Attisano Liliana, Carlen Peter L

机构信息

Krembil Research Institute, 60 Leonard Ave, 7KDT430, Toronto, ON, Canada M5T 0S8.

Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College St Room 407, Toronto, ON, Canada, M5S 3G9.

出版信息

Heliyon. 2023 Mar 29;9(4):e14999. doi: 10.1016/j.heliyon.2023.e14999. eCollection 2023 Apr.

Abstract

Epilepsy is a common neurological disorder that affects 1% of the global population. The neonatal period constitutes the highest incidence of seizures. Despite the continual developments in seizure modelling and anti-epileptic drug development, the mechanisms involved in neonatal seizures remain poorly understood. This leaves infants with neonatal seizures at a high risk of death, poor prognosis of recovery and risk of developing neurological disorders later in life. Current platforms for modelling adult and neonatal epilepsies - namely acute cerebral brain slices or cell-derived cultures, both derived from animals-either lack a complex cytoarchitecture, high-throughput capabilities or physiological similarities to the neonatal human brain. Cerebral organoids, derived from human embryonic stem cells (hESCs), are an emerging technology that could better model neurodevelopmental disorders in the developing human brain. Herein, we study induced hyperexcitability in human cerebral cortical organoids - setting the groundwork for neonatal seizure modelling - using electrophysiological techniques and pharmacological manipulations. In neonatal seizures, energy failure - specifically due to deprivation of oxygen and glucose - is a consistent and reliable seizure induction method that has been used to study the underlying cellular and molecular mechanisms. Here, we applied oxygen-glucose deprivation (OGD) as well as common chemoconvulsants in 3-7-month-old cerebral organoids. Remarkably, OGD resulted in hyperexcitability, with increased power and spontaneous events compared to other common convulsants tested at the population level. These findings characterize OGD as the stimulus most capable of inducing hyperexcitable changes in cerebral organoid tissue, which could be extended to future modelling of neonatal epilepsies in cerebral organoids.

摘要

癫痫是一种常见的神经系统疾病,影响着全球1%的人口。新生儿期癫痫发作的发生率最高。尽管癫痫发作建模和抗癫痫药物研发不断发展,但新生儿癫痫发作的相关机制仍知之甚少。这使得患有新生儿癫痫的婴儿面临高死亡风险、恢复预后差以及日后患神经系统疾病的风险。目前用于模拟成人和新生儿癫痫的平台——即源自动物的急性脑片或细胞衍生培养物——要么缺乏复杂的细胞结构、高通量能力,要么与新生儿人类大脑缺乏生理相似性。源自人类胚胎干细胞(hESC)的脑类器官是一种新兴技术,能够更好地模拟发育中的人类大脑中的神经发育障碍。在此,我们使用电生理技术和药理学操作,研究人类大脑皮质类器官中的诱导性过度兴奋——为新生儿癫痫建模奠定基础。在新生儿癫痫发作中,能量衰竭——特别是由于缺氧和葡萄糖剥夺——是一种一致且可靠的癫痫发作诱导方法,已被用于研究潜在的细胞和分子机制。在此,我们在3至7个月大的脑类器官中应用了氧葡萄糖剥夺(OGD)以及常见的化学惊厥剂。值得注意的是,与在群体水平上测试的其他常见惊厥剂相比,OGD导致了过度兴奋,功率增加且出现自发事件。这些发现表明OGD是最能在脑类器官组织中诱导过度兴奋变化的刺激因素,这可扩展至未来脑类器官中新生儿癫痫的建模。

相似文献

6

引用本文的文献

3
5
WONOEP appraisal: Modeling early onset epilepsies.WONOEP 评估:早发性癫痫建模。
Epilepsia. 2024 Sep;65(9):2553-2566. doi: 10.1111/epi.18063. Epub 2024 Jul 23.
6
Synaptic plasticity in human thalamocortical assembloids.人类丘脑皮质集合体中的突触可塑性。
Cell Rep. 2024 Aug 27;43(8):114503. doi: 10.1016/j.celrep.2024.114503. Epub 2024 Jul 16.

本文引用的文献

3
Modeling genetic epileptic encephalopathies using brain organoids.利用脑类器官模型研究遗传性癫痫性脑病。
EMBO Mol Med. 2021 Aug 9;13(8):e13610. doi: 10.15252/emmm.202013610. Epub 2021 Jul 15.
6
Vascularization of human brain organoids.人脑类器官的血管化。
Stem Cells. 2021 Aug;39(8):1017-1024. doi: 10.1002/stem.3368. Epub 2021 Mar 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验