Saleem Afifa, Santos Alexandra C, Aquilino Mark S, Sivitilli Adam A, Attisano Liliana, Carlen Peter L
Krembil Research Institute, 60 Leonard Ave, 7KDT430, Toronto, ON, Canada M5T 0S8.
Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College St Room 407, Toronto, ON, Canada, M5S 3G9.
Heliyon. 2023 Mar 29;9(4):e14999. doi: 10.1016/j.heliyon.2023.e14999. eCollection 2023 Apr.
Epilepsy is a common neurological disorder that affects 1% of the global population. The neonatal period constitutes the highest incidence of seizures. Despite the continual developments in seizure modelling and anti-epileptic drug development, the mechanisms involved in neonatal seizures remain poorly understood. This leaves infants with neonatal seizures at a high risk of death, poor prognosis of recovery and risk of developing neurological disorders later in life. Current platforms for modelling adult and neonatal epilepsies - namely acute cerebral brain slices or cell-derived cultures, both derived from animals-either lack a complex cytoarchitecture, high-throughput capabilities or physiological similarities to the neonatal human brain. Cerebral organoids, derived from human embryonic stem cells (hESCs), are an emerging technology that could better model neurodevelopmental disorders in the developing human brain. Herein, we study induced hyperexcitability in human cerebral cortical organoids - setting the groundwork for neonatal seizure modelling - using electrophysiological techniques and pharmacological manipulations. In neonatal seizures, energy failure - specifically due to deprivation of oxygen and glucose - is a consistent and reliable seizure induction method that has been used to study the underlying cellular and molecular mechanisms. Here, we applied oxygen-glucose deprivation (OGD) as well as common chemoconvulsants in 3-7-month-old cerebral organoids. Remarkably, OGD resulted in hyperexcitability, with increased power and spontaneous events compared to other common convulsants tested at the population level. These findings characterize OGD as the stimulus most capable of inducing hyperexcitable changes in cerebral organoid tissue, which could be extended to future modelling of neonatal epilepsies in cerebral organoids.
癫痫是一种常见的神经系统疾病,影响着全球1%的人口。新生儿期癫痫发作的发生率最高。尽管癫痫发作建模和抗癫痫药物研发不断发展,但新生儿癫痫发作的相关机制仍知之甚少。这使得患有新生儿癫痫的婴儿面临高死亡风险、恢复预后差以及日后患神经系统疾病的风险。目前用于模拟成人和新生儿癫痫的平台——即源自动物的急性脑片或细胞衍生培养物——要么缺乏复杂的细胞结构、高通量能力,要么与新生儿人类大脑缺乏生理相似性。源自人类胚胎干细胞(hESC)的脑类器官是一种新兴技术,能够更好地模拟发育中的人类大脑中的神经发育障碍。在此,我们使用电生理技术和药理学操作,研究人类大脑皮质类器官中的诱导性过度兴奋——为新生儿癫痫建模奠定基础。在新生儿癫痫发作中,能量衰竭——特别是由于缺氧和葡萄糖剥夺——是一种一致且可靠的癫痫发作诱导方法,已被用于研究潜在的细胞和分子机制。在此,我们在3至7个月大的脑类器官中应用了氧葡萄糖剥夺(OGD)以及常见的化学惊厥剂。值得注意的是,与在群体水平上测试的其他常见惊厥剂相比,OGD导致了过度兴奋,功率增加且出现自发事件。这些发现表明OGD是最能在脑类器官组织中诱导过度兴奋变化的刺激因素,这可扩展至未来脑类器官中新生儿癫痫的建模。