Shmakov Sergey A, Barth Zachary K, Makarova Kira S, Wolf Yuri I, Brover Vyacheslav, Peters Joseph E, Koonin Eugene V
National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA.
Department of Microbiology, Cornell University, Ithaca, NY 14853.
bioRxiv. 2023 Mar 3:2023.03.03.530964. doi: 10.1101/2023.03.03.530964.
CRISPR- loci typically contain CRISPR arrays with unique spacers separating direct repeats. Spacers along with portions of adjacent repeats are transcribed and processed into CRISPR(cr) RNAs that target complementary sequences (protospacers) in mobile genetic elements, resulting in cleavage of the target DNA or RNA. Additional, standalone repeats in some CRISPR- loci produce distinct cr-like RNAs implicated in regulatory or other functions. We developed a computational pipeline to systematically predict crRNA-like elements by scanning for standalone repeat sequences that are conserved in closely related CRISPR- loci. Numerous crRNA-like elements were detected in diverse CRISPR-Cas systems, mostly, of type I, but also subtype V-A. Standalone repeats often form mini-arrays containing two repeat-like sequence separated by a spacer that is partially complementary to promoter regions of genes, in particular , or cargo genes located within CRISPR-Cas loci, such as toxins-antitoxins. We show experimentally that a mini-array from a type I-F1 CRISPR-Cas system functions as a regulatory guide. We also identified mini-arrays in bacteriophages that could abrogate CRISPR immunity by inhibiting effector expression. Thus, recruitment of CRISPR effectors for regulatory functions via spacers with partial complementarity to the target is a common feature of diverse CRISPR-Cas systems.
CRISPR基因座通常包含CRISPR阵列,其中独特的间隔序列将同向重复序列分隔开。间隔序列与相邻重复序列的部分一起被转录并加工成CRISPR(cr)RNA,这些RNA靶向移动遗传元件中的互补序列(原间隔序列),从而导致靶DNA或RNA的切割。在一些CRISPR基因座中,额外的独立重复序列会产生与调控或其他功能相关的独特cr样RNA。我们开发了一种计算流程,通过扫描在密切相关的CRISPR基因座中保守的独立重复序列,系统地预测crRNA样元件。在多种CRISPR-Cas系统中检测到了大量的crRNA样元件,其中大多数属于I型,但也有V-A亚型。独立重复序列通常会形成微型阵列,其中包含两个由间隔序列分隔的重复样序列,该间隔序列与基因的启动子区域部分互补,特别是与位于CRISPR-Cas基因座内的基因或货物基因(如毒素-抗毒素)的启动子区域部分互补。我们通过实验表明,来自I-F1型CRISPR-Cas系统的一个微型阵列可作为一种调控向导发挥作用。我们还在噬菌体中鉴定出了微型阵列,这些微型阵列可通过抑制效应子表达来消除CRISPR免疫。因此,通过与靶标部分互补的间隔序列招募CRISPR效应子用于调控功能是多种CRISPR-Cas系统的一个共同特征。