Muñoz G G, Millicovsky M J, Reta J M, Cerrudo J I, Peñalva A, Machtey M, Torres R M, Zalazar M A
Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta Prov. 11 (Km 10), (3100) Oro Verde, Entre Ríos, Argentina.
Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta Prov. 11 (Km 10), (3100) Oro Verde, Entre Ríos, Argentina.
HardwareX. 2023 Mar 31;14:e00416. doi: 10.1016/j.ohx.2023.e00416. eCollection 2023 Jun.
Advances in sensors have revolutionized the biomedical engineering field, having an extreme affinity for specific analytes also providing an effective, real-time, point-of-care testing for an accurate diagnosis. Quartz Crystal Microbalance (QCM) is a well-established sensor that has been successfully applied in a broad range of applications to monitor and explore various surface interactions, in situ thin-film formations, and layer properties. This technology has gained interest in biomedical applications since novel QCM systems are able to work in liquid media. QCM with dissipation monitoring (QCM-D) is an expanded version of a QCM that measures changes in damping properties of adsorbed layers thus providing information on its viscoelastic nature. In this article, an open source and low cost QCM-D prototype for biomedical applications was developed. In addition, the system was validated using different Polyethylene Glycol (PEG) concentrations due to its importance for many medical applications. The statistics show a bigger dissipation of the system as the fluid becomes more viscous, also having a very acceptable sensibility when temperature is controlled.
传感器的进步彻底改变了生物医学工程领域,它对特定分析物具有极高的亲和力,还能提供有效、实时的即时检测以实现准确诊断。石英晶体微天平(QCM)是一种成熟的传感器,已成功应用于广泛的领域,用于监测和探索各种表面相互作用、原位薄膜形成及层特性。自从新型QCM系统能够在液体介质中工作以来,这项技术在生物医学应用中受到了关注。带有耗散监测的QCM(QCM-D)是QCM的扩展版本,它测量吸附层阻尼特性的变化,从而提供有关其粘弹性性质的信息。在本文中,开发了一种用于生物医学应用的开源低成本QCM-D原型。此外,由于聚乙二醇(PEG)在许多医学应用中的重要性,该系统使用不同浓度的PEG进行了验证。统计数据表明,随着流体变得更粘稠,系统的耗散更大,并且在温度得到控制时也具有非常可接受的灵敏度。