Suppr超能文献

用于慢性下背痛研究(个性化单病例试验)的R Shiny应用程序。

An R Shiny App for a Chronic Lower Back Pain Study, Personalized N-of-1 Trial.

作者信息

Chandereng Thevaa

机构信息

Mailman School of Public Health, Columbia University, New York, NY, USA.

出版信息

Harv Data Sci Rev. 2022;2022(SI3). doi: 10.1162/99608f92.6c21dab7. Epub 2022 Sep 8.

Abstract

The call for personalized medicine highlights the need for personalized (N-of-1) trials to find what treatment works best for individual patients. Conventional (between-subject) randomized controlled trials (RCT) yield effects for the 'average patient,' but a personalized trial administers all treatments within-subject, so benefits or harms to the individual patient can be identified. The design and analysis of personalized trials involve different strategies from the conventional RCT. These include how to adjust for any carryover effects from one intervention to another, how to handle missing data, and how to provide patients with insight into their data. In addition, a comprehensible report about trial results should be created for each patient and their clinician to facilitate their decision-making. This article describes strategies to address these design and analytic issues, and introduces an R shiny app to facilitate their solution, to explain the use of each of the design and statistical strategies. To illustrate, we also provide a concrete example of a personalized trial series designed to increase activity (i.e., walking steps) in patients with chronic lower back pain (CLBP).

摘要

对个性化医疗的呼吁凸显了进行个性化(单病例)试验以找出最适合个体患者的治疗方法的必要性。传统的(受试者间)随机对照试验(RCT)得出的是“平均患者”的疗效,但个性化试验在受试者内实施所有治疗,因此可以识别个体患者的益处或危害。个性化试验的设计和分析涉及与传统RCT不同的策略。这些策略包括如何调整一种干预措施对另一种干预措施的任何残留效应、如何处理缺失数据以及如何让患者了解他们的数据。此外,应为每位患者及其临床医生创建一份关于试验结果的易懂报告,以促进他们的决策。本文描述了应对这些设计和分析问题的策略,并介绍了一个R shiny应用程序以促进问题的解决,解释每种设计和统计策略的用法。为了说明,我们还提供了一个个性化试验系列的具体例子,该试验旨在增加慢性下腰痛(CLBP)患者的活动量(即步行步数)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验