Rodriguez Saxon, Sun Baohua, McAllen Salome, Jiang Mei, Parra Edwin Roger
Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center.
Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center;
J Vis Exp. 2023 Apr 7(194). doi: 10.3791/64758.
Multiplexed imaging technology using antibody barcoding with oligonucleotides, which sequentially detects multiple epitopes in the same tissue section, is an effective methodology for tumor evaluation that improves the understanding of the tumor microenvironment. The visualization of protein expression in formalin-fixed, paraffin-embedded tissues is achieved when a specific fluorophore is annealed to an antibody-bound barcode via complementary oligonucleotides and then sample imaging is performed; indeed, this method allows for the use of customizable panels of more than 40 antibodies in a single tissue staining reaction. This method is compatible with fresh frozen tissue, formalin-fixed, paraffin-embedded tissue, cultured cells, and peripheral blood mononuclear cells, meaning that researchers can use this technology to view a variety of sample types at single-cell resolution. This method starts with a manual staining and fixing protocol, and all the antibody barcodes are applied using an antibody cocktail. The staining fluidics instrument is fully automated and performs iterative cycles of labeling, imaging, and removing spectrally distinct fluorophores until all the biomarkers have been imaged using a standard fluorescence microscope. The images are then collected and compiled across all the imaging cycles to achieve single-cell resolution for all the markers. The single-step staining and gentle fluorophore removal not only allow for highly multiplexed biomarker analysis but also preserve the sample for additional downstream analysis if desired (e.g., hematoxylin and eosin staining). Furthermore, the image analysis software enables image processing-drift compensation, background subtraction, cell segmentation, and clustering-as well as the visualization and analysis of the images and cell phenotypes for the generation of spatial network maps. In summary, this technology employs a computerized microfluidics system and fluorescence microscope to iteratively hybridize, image, and strip fluorescently labeled DNA probes that are complementary to tissue-bound, oligonucleotide-conjugated antibodies.
使用带有寡核苷酸的抗体条形码的多重成像技术,可在同一组织切片中顺序检测多个表位,是一种用于肿瘤评估的有效方法,有助于增进对肿瘤微环境的理解。当通过互补寡核苷酸将特定荧光团退火到与抗体结合的条形码上,然后进行样本成像时,就能实现福尔马林固定、石蜡包埋组织中蛋白质表达的可视化;实际上,该方法允许在单个组织染色反应中使用40多种抗体的可定制面板。此方法与新鲜冷冻组织、福尔马林固定石蜡包埋组织、培养细胞和外周血单核细胞兼容,这意味着研究人员可以使用该技术以单细胞分辨率观察各种样本类型。该方法始于手动染色和固定方案,所有抗体条形码都使用抗体混合物来应用。染色流体仪器是全自动的,执行标记、成像和去除光谱上不同的荧光团的迭代循环,直到使用标准荧光显微镜对所有生物标志物进行成像。然后收集并汇总所有成像周期的图像,以实现所有标记物的单细胞分辨率。单步染色和温和的荧光团去除不仅允许进行高度多重的生物标志物分析,还能在需要时保留样本用于额外的下游分析(例如苏木精和伊红染色)。此外,图像分析软件能够进行图像处理——漂移补偿、背景扣除、细胞分割和聚类——以及图像和细胞表型的可视化和分析,以生成空间网络图谱。总之,该技术采用计算机化微流体系统和荧光显微镜,对与组织结合的寡核苷酸偶联抗体互补的荧光标记DNA探针进行迭代杂交、成像和剥离。