Suppr超能文献

抑郁症状与代谢组学的网络分析。

A network analysis of depressive symptoms and metabolomics.

机构信息

Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands.

Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands.

出版信息

Psychol Med. 2023 Nov;53(15):7385-7394. doi: 10.1017/S0033291723001009. Epub 2023 Apr 24.

Abstract

BACKGROUND

Depression is associated with metabolic alterations including lipid dysregulation, whereby associations may vary across individual symptoms. Evaluating these associations using a network perspective yields a more complete insight than single outcome-single predictor models.

METHODS

We used data from the Netherlands Study of Depression and Anxiety ( = 2498) and leveraged networks capturing associations between 30 depressive symptoms (Inventory of Depressive Symptomatology) and 46 metabolites. Analyses involved 4 steps: creating a network with Mixed Graphical Models; calculating centrality measures; bootstrapping for stability testing; validating central, stable associations by extra covariate-adjustment; and validation using another data wave collected 6 years later.

RESULTS

The network yielded 28 symptom-metabolite associations. There were 15 highly-central variables (8 symptoms, 7 metabolites), and 3 stable links involving the symptoms Low energy (fatigue), and Hypersomnia. Specifically, fatigue showed consistent associations with higher mean diameter for VLDL particles and lower estimated degree of (fatty acid) unsaturation. These remained present after adjustment for lifestyle and health-related factors and using another data wave.

CONCLUSIONS

The somatic symptoms Fatigue and Hypersomnia and cholesterol and fatty acid measures showed central, stable, and consistent relationships in our network. The present analyses showed how metabolic alterations are more consistently linked to specific symptom profiles.

摘要

背景

抑郁症与代谢改变有关,包括脂质失调,而这些关联可能因个体症状的不同而有所不同。从网络角度评估这些关联可以比单一结果-单一预测因子模型提供更全面的见解。

方法

我们使用了荷兰抑郁和焦虑研究(n=2498)的数据,并利用网络捕捉了 30 种抑郁症状(抑郁症状清单)和 46 种代谢物之间的关联。分析包括以下 4 个步骤:使用混合图形模型创建网络;计算中心性度量;进行 Bootstrap 稳定性测试;通过额外的协变量调整验证中心和稳定的关联;并使用 6 年后收集的另一个数据波进行验证。

结果

该网络产生了 28 个症状-代谢物关联。有 15 个高度中心变量(8 个症状,7 个代谢物)和 3 个稳定的联系涉及症状低能量(疲劳)和嗜睡。具体来说,疲劳与 VLDL 颗粒的平均直径较高和(脂肪酸)不饱和程度较低有一致的关联。在调整生活方式和与健康相关的因素以及使用另一个数据波后,这些关联仍然存在。

结论

在我们的网络中,躯体症状疲劳和嗜睡以及胆固醇和脂肪酸指标显示出中心、稳定和一致的关系。目前的分析表明代谢改变如何更一致地与特定的症状特征相关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f339/10719687/e481430673f4/S0033291723001009_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验