Hicks Alan, Abraham Paul, Leite Wellington, Zhang Qiu, Weiss Kevin L, O'Neill Hugh, Petridis Loukas, Smith Jeremy C
UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Acta Crystallogr D Struct Biol. 2023 May 1;79(Pt 5):420-434. doi: 10.1107/S2059798323002899. Epub 2023 Apr 24.
The contrast-variation method in small-angle neutron scattering (SANS) is a uniquely powerful technique for determining the structure of individual components in biomolecular systems containing regions of different neutron scattering length density ρ. By altering the ρ of the target solute and the solvent through judicious incorporation of deuterium, the scattering of desired solute features can be highlighted. Most contrast-variation methods focus on highlighting specific bulk solute elements, but not on how the scattering at specific scattering vectors q, which are associated with specific structural distances, changes with contrast. Indeed, many systems exhibit q-dependent contrast effects. Here, a method is presented for calculating both bulk contrast-match points and q-dependent contrast using 3D models with explicit solute and solvent atoms and SASSENA, an explicit-atom SANS calculator. The method calculates the bulk contrast-match points within 2.4% solvent DO accuracy for test protein-nucleic acid and lipid nanodisc systems. The method incorporates a general model for the incorporation of deuterium at non-exchangeable sites that was derived by performing mass spectrometry on green fluorescent protein. The method also decomposes the scattering profile into its component parts and identifies structural features that change with contrast. The method is readily applicable to a variety of systems, will expand the understanding of q-dependent contrast matching and will aid in the optimization of next-generation neutron scattering experiments.
小角中子散射(SANS)中的对比变化方法是一种独特而强大的技术,用于确定生物分子系统中包含不同中子散射长度密度ρ区域的各个组分的结构。通过明智地引入氘来改变目标溶质和溶剂的ρ,可以突出所需溶质特征的散射。大多数对比变化方法侧重于突出特定的整体溶质元素,而不是与特定结构距离相关的特定散射矢量q处的散射如何随对比度变化。实际上,许多系统表现出与q相关的对比效应。本文提出了一种方法,使用具有明确溶质和溶剂原子的三维模型以及显式原子SANS计算器SASSENA,来计算整体对比匹配点和与q相关的对比度。该方法在测试蛋白质 - 核酸和脂质纳米盘系统时,能在2.4%的溶剂DO精度内计算出整体对比匹配点。该方法纳入了一个用于在非交换位点引入氘的通用模型,该模型是通过对绿色荧光蛋白进行质谱分析得出的。该方法还将散射轮廓分解为其组成部分,并识别随对比度变化的结构特征。该方法很容易应用于各种系统,将扩展对与q相关的对比匹配的理解,并有助于优化下一代中子散射实验。