Suppr超能文献

带可扩展等离子喷涂铝涂层的池沸腾换热特性。

Heat Transfer Characteristics of Pool Boiling with Scalable Plasma-Sprayed Aluminum Coatings.

机构信息

Sustainable Energy Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801106, India.

Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Patna 801106, India.

出版信息

Langmuir. 2023 May 9;39(18):6337-6354. doi: 10.1021/acs.langmuir.2c03436. Epub 2023 Apr 24.

Abstract

To ensure adequate reliability in two-phase cooling systems involving boiling, it is essential to enhance the heat transfer coefficient and maximize the critical heat flux (CHF) limit. A key technique to avoid surface burnout and increase the CHF limit in pool boiling is the frequent coolant supply to the probable dry-out locations. In the present work, we have explored the plasma-spray coating as a surface modification technique for enhancing heat transfer coefficient and CHF value in pool boiling applications. Three plasma-coated aluminum surfaces (C-15, C-20, and C-25) are fabricated on a copper substrate at three different plasma powers of 15, 20, and 25 kW, respectively. Detailed surface morphologies of the plasma-sprayed coatings are presented, and their roles in pool boiling heat transfer mechanisms are analyzed. Plasma-coated surfaces exhibit wickability characteristics and enhanced wettability compared to the plain copper surface. Saturated pool boiling experiments are performed with DI (deionized) water at atmospheric pressure. Plasma spray-coated surfaces show favorable boiling incipience with less wall superheat and more active nucleation sites than the plain copper surface. Compared to the plain copper surface, enhancement values of nearly 68, 60.7, and 55.5% in the heat transfer coefficient are observed for C-15, C-20, and C-25 plasma-coated surfaces, respectively. Experiments could not be performed beyond the heat flux of 197 W/cm due to repeated failure of the cartridge heaters. Based on the experimental measurement of wickabilities, the CHF values of plasma-coated surfaces have been theoretically calculated. Compared to the plain copper surface, a maximum 2.39 times higher CHF value is observed for C-15 plasma-coated surface. Improved wettability and wickability are responsible for CHF enhancement in the case of plasma-coated surfaces. At higher heat flux, capillary wicking and frequent rewetting of the dryout locations delay the burnout phenomenon, enhancing CHF in plasma-coated surfaces. The plasma-spray coating is a robust and scalable process, which can be a potential candidate for high heat flux dissipation in various industrial applications.

摘要

为了确保两相冷却系统中沸腾过程的充分可靠性,提高传热系数并最大限度地提高临界热通量(CHF)极限至关重要。避免表面烧干并提高池沸腾中 CHF 极限的关键技术是向可能出现干涸的位置频繁供应冷却剂。在本工作中,我们探索了等离子喷涂涂层作为一种表面改性技术,用于提高池沸腾应用中的传热系数和 CHF 值。在分别为 15、20 和 25kW 的三种等离子功率下,在铜基板上制备了三种等离子喷涂的铝表面(C-15、C-20 和 C-25)。给出了等离子喷涂涂层的详细表面形貌,并分析了它们在池沸腾传热机制中的作用。等离子喷涂表面表现出芯吸特性和增强的润湿性,与纯铜表面相比。在大气压力下使用去离子(DI)水进行饱和池沸腾实验。与纯铜表面相比,等离子喷涂表面具有更好的沸腾起始特性,需要的壁面过热度更低,且具有更多的活性成核点。与纯铜表面相比,C-15、C-20 和 C-25 等离子喷涂表面的传热系数分别提高了近 68%、60.7%和 55.5%。由于加热丝的反复失效,实验无法在超过 197W/cm2 的热通量下进行。根据芯吸性的实验测量,理论上计算了等离子喷涂表面的 CHF 值。与纯铜表面相比,C-15 等离子喷涂表面的 CHF 值最高提高了 2.39 倍。在等离子喷涂表面,提高的润湿性和芯吸性是 CHF 增强的原因。在较高的热通量下,毛细芯吸和干涸位置的频繁再润湿延迟了烧干现象,从而提高了等离子喷涂表面的 CHF。等离子喷涂涂层是一种坚固且可扩展的工艺,有望成为各种工业应用中高热通量耗散的潜在候选方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验