Suppr超能文献

应变调控的Pt-NiO@Ni亚微米颗粒实现锌空气电池的双功能电催化

Strain-Regulated Pt-NiO@Ni Sub-Micron Particles Achieving Bifunctional Electrocatalysis for Zinc-Air Battery.

作者信息

Zhang Fan, Ji Renjie, Zhu Xiaoyang, Li Hongke, Wang Yating, Wang Jingpeng, Wang Fei, Lan Hongbo

机构信息

Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China.

Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China.

出版信息

Small. 2023 Aug;19(34):e2301640. doi: 10.1002/smll.202301640. Epub 2023 Apr 24.

Abstract

Highly active bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have always been the key factors to affect the performance of zinc-air batteries. However, integrating the independent reaction sites of ORR and OER in a catalyst remains a major challenge. Herein, a collaborative strategy based on defect induction and doping is proposed to prepare the strain-regulated Pt-NiO@Ni sub-micron particles (Pt-NiO@Ni SP). Benefiting from the synergistic effect of tensile strain and Pt-doped, the metallic Ni-based sub-micron particles with tensile strain as the catalyst carriers can effectively optimize the electronic distribution of atomic structures in Pt and NiO on the surface of particles, leading to reduce the energy barrier of intermediates for ORR and OER. Consequently, the Pt-NiO@Ni SP exhibits outstanding bifunctional catalytic activity with the ΔE index of 0.65 V under a low Pt loading, outperforming that of the benchmark Pt/C+IrO catalysts (0.76 V). Impressively, the Pt-NiO@Ni SP-based liquid zinc-air battery develops a high open-circuit potential (1.47 V), excellent energy density (188.2 mW cm ), and favorable cyclic charge-discharge cycling durability (200 h at 20 mA cm ). This work provides an innovative avenue for the rational construction of highly active bifunctional electrocatalysts for practical applications.

摘要

用于析氧反应(OER)和氧还原反应(ORR)的高活性双功能电催化剂一直是影响锌空气电池性能的关键因素。然而,在催化剂中整合ORR和OER的独立反应位点仍然是一个重大挑战。在此,提出了一种基于缺陷诱导和掺杂的协同策略来制备应变调控的Pt-NiO@Ni亚微米颗粒(Pt-NiO@Ni SP)。受益于拉伸应变和Pt掺杂的协同效应,以具有拉伸应变的金属Ni基亚微米颗粒作为催化剂载体,可以有效优化颗粒表面Pt和NiO中原子结构的电子分布,从而降低ORR和OER中间体的能垒。因此,Pt-NiO@Ni SP在低Pt负载下表现出出色的双功能催化活性,ΔE指数为0.65 V,优于基准Pt/C+IrO催化剂(0.76 V)。令人印象深刻的是,基于Pt-NiO@Ni SP的液态锌空气电池具有高开路电位(1.47 V)、优异的能量密度(188.2 mW cm)和良好的循环充放电循环耐久性(在20 mA cm下200 h)。这项工作为合理构建用于实际应用的高活性双功能电催化剂提供了一条创新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验