Suppr超能文献

用于估计全身成分的胸腰椎体成分的CT分析。

CT analysis of thoracolumbar body composition for estimating whole-body composition.

作者信息

Hong Jung Hee, Hong Hyunsook, Choi Ye Ra, Kim Dong Hyun, Kim Jin Young, Yoon Jeong-Hwa, Yoon Soon Ho

机构信息

Department of Radiology, Dongsan Hospital, Keimyung University College of Medicine, Daegu, Korea.

Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Korea.

出版信息

Insights Imaging. 2023 Apr 24;14(1):69. doi: 10.1186/s13244-023-01402-z.

Abstract

BACKGROUND

To evaluate the correlation between single- and multi-slice cross-sectional thoracolumbar and whole-body compositions.

METHODS

We retrospectively included patients who underwent whole-body PET-CT scans from January 2016 to December 2019 at multiple institutions. A priori-developed, deep learning-based commercially available 3D U-Net segmentation provided whole-body 3D reference volumes and 2D areas of muscle, visceral fat, and subcutaneous fat at the upper, middle, and lower endplate of the individual T1-L5 vertebrae. In the derivation set, we analyzed the Pearson correlation coefficients of single-slice and multi-slice averaged 2D areas (waist and T12-L1) with the reference values. We then built prediction models using the top three correlated levels and tested the models in the validation set.

RESULTS

The derivation and validation datasets included 203 (mean age 58.2 years; 101 men) and 239 patients (mean age 57.8 years; 80 men). The coefficients were distributed bimodally, with the first peak at T4 (coefficient, 0.78) and the second peak at L2-3 (coefficient 0.90). The top three correlations in the abdominal scan range were found for multi-slice waist averaging (0.92) and single-slice L3 and L2 (0.90, each), while those in the chest scan range were multi-slice T12-L1 averaging (0.89), single-slice L1 (0.89), and T12 (0.86). The model performance at the top three levels for estimating whole-body composition was similar in the derivation and validation datasets.

CONCLUSIONS

Single-slice L2-3 (abdominal CT range) and L1 (chest CT range) analysis best correlated with whole-body composition around 0.90 (coefficient). Multi-slice waist averaging provided a slightly higher correlation of 0.92.

摘要

背景

评估单层面与多层面胸腰椎横断面及全身成分之间的相关性。

方法

我们回顾性纳入了2016年1月至2019年12月期间在多个机构接受全身PET-CT扫描的患者。基于深度学习的商用3D U-Net分割技术预先开发,可提供全身3D参考体积以及单个T1-L5椎体上、中、下端椎板处肌肉、内脏脂肪和皮下脂肪的2D面积。在推导集中,我们分析了单层面和多层面平均2D面积(腰围和T12-L1)与参考值之间的Pearson相关系数。然后,我们使用相关性最高的三个层面建立预测模型,并在验证集中对模型进行测试。

结果

推导数据集和验证数据集分别包括203例患者(平均年龄58.2岁;101例男性)和239例患者(平均年龄57.8岁;80例男性)。相关系数呈双峰分布,第一个峰值出现在T4(系数为0.78),第二个峰值出现在L2-3(系数为0.90)。腹部扫描范围内相关性最高的三个层面分别是多层面腰围平均值(0.92)以及单层面L3和L2(均为0.90),而胸部扫描范围内相关性最高的三个层面分别是多层面T12-L1平均值(0.89)、单层面L1(0.89)和T12(0.86)。在推导数据集和验证数据集中,用于估计全身成分的相关性最高的三个层面的模型性能相似。

结论

单层面L2-3(腹部CT范围)和L1(胸部CT范围)分析与全身成分的相关性最佳,系数约为0.90。多层面腰围平均值的相关性略高,为0.92。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac92/10126176/9e3fa7b5acb9/13244_2023_1402_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验