文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能分析重症肺炎患者的胸肌量

Cluster analysis of thoracic muscle mass using artificial intelligence in severe pneumonia.

机构信息

Department of Physical Medicine and Rehabilitation, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea.

Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea.

出版信息

Sci Rep. 2024 Jul 23;14(1):16912. doi: 10.1038/s41598-024-67625-2.


DOI:10.1038/s41598-024-67625-2
PMID:39043882
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11266397/
Abstract

Severe pneumonia results in high morbidity and mortality despite advanced treatments. This study investigates thoracic muscle mass from chest CT scans as a biomarker for predicting clinical outcomes in ICU patients with severe pneumonia. Analyzing electronic medical records and chest CT scans of 778 ICU patients with severe community-acquired pneumonia from January 2016 to December 2021, AI-enhanced 3D segmentation was used to assess thoracic muscle mass. Patients were categorized into clusters based on muscle mass profiles derived from CT scans, and their effects on clinical outcomes such as extubation success and in-hospital mortality were assessed. The study identified three clusters, showing that higher muscle mass (Cluster 1) correlated with lower in-hospital mortality (8% vs. 29% in Cluster 3) and improved clinical outcomes like extubation success. The model integrating muscle mass metrics outperformed conventional scores, with an AUC of 0.844 for predicting extubation success and 0.696 for predicting mortality. These findings highlight the strong predictive capacity of muscle mass evaluation over indices such as APACHE II and SOFA. Using AI to analyze thoracic muscle mass via chest CT provides a promising prognostic approach in severe pneumonia, advocating for its integration into clinical practice for better outcome predictions and personalized patient management.

摘要

尽管有先进的治疗方法,严重肺炎仍会导致高发病率和死亡率。本研究通过胸部 CT 扫描调查胸肌量作为 ICU 重症肺炎患者预测临床结局的生物标志物。分析了 2016 年 1 月至 2021 年 12 月期间 778 例 ICU 重症社区获得性肺炎患者的电子病历和胸部 CT 扫描,采用人工智能增强 3D 分割来评估胸肌量。根据 CT 扫描得出的肌肉量图谱,患者分为不同的簇,评估其对临床结局(如拔管成功率和住院死亡率)的影响。研究确定了三个簇,表明更高的肌肉量(簇 1)与较低的住院死亡率(簇 3 中为 29%,簇 1 中为 8%)和更好的临床结局(如拔管成功率)相关。整合肌肉量指标的模型优于常规评分,对拔管成功率的预测 AUC 为 0.844,对死亡率的预测 AUC 为 0.696。这些发现强调了肌肉量评估比 APACHE II 和 SOFA 等指数具有更强的预测能力。使用人工智能通过胸部 CT 分析胸肌量为严重肺炎提供了一种有前途的预后方法,提倡将其纳入临床实践,以更好地预测结果和进行个性化患者管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55c4/11266397/185c059ea25f/41598_2024_67625_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55c4/11266397/26fe38ef1d6d/41598_2024_67625_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55c4/11266397/43943c374b40/41598_2024_67625_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55c4/11266397/185c059ea25f/41598_2024_67625_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55c4/11266397/26fe38ef1d6d/41598_2024_67625_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55c4/11266397/43943c374b40/41598_2024_67625_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55c4/11266397/185c059ea25f/41598_2024_67625_Fig3_HTML.jpg

相似文献

[1]
Cluster analysis of thoracic muscle mass using artificial intelligence in severe pneumonia.

Sci Rep. 2024-7-23

[2]
Low thoracic skeletal muscle is a risk factor for 6-month mortality of severe community-acquired pneumonia in older men in intensive care unit.

BMC Pulm Med. 2024-8-11

[3]
Community-Acquired Pneumonia Visualized on CT Scans but Not Chest Radiographs: Pathogens, Severity, and Clinical Outcomes.

Chest. 2017-8-9

[4]
Mortality prediction in community-acquired pneumonia requiring mechanical ventilation; values of pneumonia and intensive care unit severity scores.

Tuberk Toraks. 2010

[5]
Early chest computed tomography in adult acute severe community-acquired pneumonia patients treated in the intensive care unit.

Acta Anaesthesiol Scand. 2016-9

[6]
The association between L1 skeletal muscle index derived from routine CT and in-hospital mortality in CAP patients in the ED.

Am J Emerg Med. 2021-4

[7]
Lumbar skeletal muscle index derived from routine computed tomography exams predict adverse post-extubation outcomes in critically ill patients.

J Crit Care. 2017-10-23

[8]
[Timing of sequential noninvasive mechanical ventilation following early extubation in aged patients with severe community-acquired pneumonia].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2020-3

[9]
Severe community acquired pneumonia: a one-year analysis in a tertiary referral intensive care unit.

N Z Med J. 2000-5-12

[10]
Application and comparison of scoring indices to predict outcomes in patients with healthcare-associated pneumonia.

Crit Care. 2011-1-19

引用本文的文献

[1]
A Cohort Study of Pediatric Severe Community-Acquired Pneumonia Involving AI-Based CT Image Parameters and Electronic Health Record Data.

Infect Dis Ther. 2025-8-8

本文引用的文献

[1]
Association between reduced muscle mass and poor prognosis of biliary sepsis.

Sci Rep. 2024-1-22

[2]
Assessment of the Diaphragm Thickness Decrease in Critically Ill COVID-19 Patients: Could Computed Tomography Be of Aid Regarding Diaphragm Muscle Mass?

Cureus. 2023-10-17

[3]
Nutrition and Regulation of Muscle Protein Synthesis.

Nutrients. 2023-9-16

[4]
Association between successful weaning from nasogastric tube feeding and thoracic muscle mass in patients with aspiration pneumonia.

Medicine (Baltimore). 2023-7-28

[5]
Machine learning-based prediction of in-ICU mortality in pneumonia patients.

Sci Rep. 2023-7-17

[6]
Prevalence and mortality risk of low skeletal muscle mass in critically ill patients: an updated systematic review and meta-analysis.

Front Nutr. 2023-5-12

[7]
The Clinical Frailty Scale for mortality prediction of old acutely admitted intensive care patients: a meta-analysis of individual patient-level data.

Ann Intensive Care. 2023-5-3

[8]
CT analysis of thoracolumbar body composition for estimating whole-body composition.

Insights Imaging. 2023-4-24

[9]
Characterization of muscle mass, strength and mobility of critically ill patients with SARS-CoV-2 pneumonia: Distribution by sex, age, days on mechanical ventilation, and muscle weakness.

Front Physiol. 2023-2-10

[10]
Clustering of critically ill patients using an individualized learning approach enables dose optimization of mobilization in the ICU.

Crit Care. 2023-1-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索