Department of Chemistry, University of California, Berkeley, California 94720, United States.
Department of Physics, University of California, Berkeley, California 94720, United States.
ACS Nano. 2023 May 9;17(9):8303-8314. doi: 10.1021/acsnano.2c12668. Epub 2023 Apr 24.
We examine the organization and dynamics of binary colloidal monolayers composed of micron-scale silica particles interspersed with smaller-diameter silica particles that serve as minority component impurities. These binary monolayers are prepared at the surface of ionic liquid droplets over a range of size ratios (σ = 0.16-0.66) and are studied with low-dose minimally perturbative scanning electron microscopy (SEM). The high resolution of SEM imaging provides direct tracking of all particle coordinates over time, enabling a complete description of the microscopic state. In these bidisperse size mixtures, particle interactions are nonadditive because interfacial pinning to the droplet surface causes the equators of differently sized particles to lie in separate planes. By varying the size ratio, we control the extent of nonadditivity in order to achieve phase behavior inaccessible to additive 2D systems. Across the range of size ratios, we tune the system from a mobile small-particle phase (σ < 0.24) to an interstitial solid (0.24 < σ < 0.33) and furthermore to a disordered glass (σ > 0.33). These distinct phase regimes are classified through measurements of hexagonal ordering of the large-particle host lattice and the lattice's capacity for small-particle transport. Altogether, we explain these structural and dynamic trends by considering the combined influence of interparticle interactions and the colloidal packing geometry. Our measurements are reproduced in molecular dynamics simulations of 2D nonadditive disks, suggesting an efficient method for describing confined systems with reduced dimensionality representations.
我们研究了由微米级二氧化硅颗粒组成的二元胶体单层的组织和动力学,其中穿插有较小直径的二氧化硅颗粒作为少数成分杂质。这些二元单层是在离子液滴表面上制备的,范围为大小比(σ=0.16-0.66),并通过低剂量最小扰动扫描电子显微镜(SEM)进行研究。SEM 成像的高分辨率提供了随时间推移的所有粒子坐标的直接跟踪,从而能够完整描述微观状态。在这些双分散尺寸混合物中,由于界面固定在液滴表面上,颗粒相互作用是非加和的,导致不同尺寸颗粒的赤道位于不同的平面上。通过改变大小比,我们控制非加和性的程度,以实现对加和二维系统不可用的相行为。在整个大小比范围内,我们将系统从可移动的小颗粒相(σ<0.24)调谐到间隙固体(0.24<σ<0.33),并且进一步调谐到无序玻璃(σ>0.33)。这些不同的相态区域通过测量大颗粒主晶格的六边形有序性和晶格对小颗粒输运的能力来分类。总的来说,我们通过考虑颗粒间相互作用和胶体堆积几何形状的综合影响来解释这些结构和动态趋势。我们的测量结果在二维非加和圆盘的分子动力学模拟中得到了重现,这表明了一种用于描述具有减小的维度表示的受限系统的有效方法。