Raybin Jonathan G, Dunsworth Ethan J, Guo Veronica, Ginsberg Naomi S
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Engineering Science Program, University of California, Berkeley, California 94720, United States.
ACS Appl Mater Interfaces. 2024 Dec 11;16(49):68611-68620. doi: 10.1021/acsami.4c14882. Epub 2024 Dec 3.
The directed self-assembly of colloidal nanoparticles (NPs) using external fields guides the formation of sophisticated hierarchical materials but becomes less effective with decreasing particle size. As an alternative, electron-beam-driven assembly offers a potential avenue for targeted nanoscale manipulation, yet remains poorly controlled due to the variety and complexity of beam interaction mechanisms. Here, we investigate the beam-particle interaction of silica NPs pinned to the fluid-vacuum interface of ionic liquid droplets. In these experiments, scanning electron microscopy of the droplet surface resolves NP trajectories over space and time while simultaneously driving their reorganization. With this platform, we demonstrate the ability to direct particle transport and create transient, reversible colloidal patterns on the droplet surface. By tuning the beam voltage, we achieve precise control over both the strength and sign of the beam-particle interaction, with low voltages repelling particles and high voltages attracting them. This response stems from the formation of well-defined solvent flow fields generated from trace radiolysis of the ionic liquid, as determined through statistical analysis of single-particle trajectories under varying solvent composition. Altogether, electron-beam-guided assembly introduces a versatile strategy for nanoscale colloidal manipulation, offering new possibilities for the design of dynamic, reconfigurable systems with applications in adaptive photonics and catalysis.
利用外部场对胶体纳米颗粒(NPs)进行定向自组装可引导形成复杂的分级材料,但随着粒径减小,其效果会变差。作为一种替代方法,电子束驱动组装为靶向纳米级操纵提供了一条潜在途径,但由于束流相互作用机制的多样性和复杂性,其控制效果仍然不佳。在此,我们研究了固定在离子液体微滴流体 - 真空界面上的二氧化硅纳米颗粒的束流 - 颗粒相互作用。在这些实验中,对微滴表面进行扫描电子显微镜观察可解析纳米颗粒在空间和时间上的轨迹,同时驱动它们重新排列。利用这个平台,我们展示了引导颗粒传输以及在微滴表面创建瞬态、可逆胶体图案的能力。通过调节束流电压,我们实现了对束流 - 颗粒相互作用的强度和符号的精确控制,低电压排斥颗粒,高电压吸引颗粒。这种响应源于离子液体微量辐射分解产生的明确溶剂流场的形成,这是通过对不同溶剂组成下单颗粒轨迹的统计分析确定的。总之,电子束引导组装引入了一种用于纳米级胶体操纵的通用策略,为设计具有自适应光子学和催化应用的动态、可重构系统提供了新的可能性。