Courant Institute, New York University, New York, New York 10012, USA.
Departamento Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain.
J Chem Phys. 2023 Apr 21;158(15). doi: 10.1063/5.0141371.
We develop a linearly scaling variant of the force coupling method [K. Yeo and M. R. Maxey, J. Fluid Mech. 649, 205-231 (2010)] for computing hydrodynamic interactions among particles confined to a doubly periodic geometry with either a single bottom wall or two walls (slit channel) in the aperiodic direction. Our spectrally accurate Stokes solver uses the fast Fourier transform in the periodic xy plane and Chebyshev polynomials in the aperiodic z direction normal to the wall(s). We decompose the problem into two problems. The first is a doubly periodic subproblem in the presence of particles (source terms) with free-space boundary conditions in the z direction, which we solve by borrowing ideas from a recent method for rapid evaluation of electrostatic interactions in doubly periodic geometries [Maxian et al., J. Chem. Phys. 154, 204107 (2021)]. The second is a correction subproblem to impose the boundary conditions on the wall(s). Instead of the traditional Gaussian kernel, we use the exponential of a semicircle kernel to model the source terms (body force) due to the presence of particles and provide optimum values for the kernel parameters that ensure a given hydrodynamic radius with at least two digits of accuracy and rotational and translational invariance. The computation time of our solver, which is implemented in graphical processing units, scales linearly with the number of particles, and allows computations with about a million particles in less than a second for a sedimented layer of colloidal microrollers. We find that in a slit channel, a driven dense suspension of microrollers maintains the same two-layer structure as above a single wall, but moves at a substantially lower collective speed due to increased confinement.
我们开发了一种线性缩放变体的力耦合法[K. Yeo 和 M. R. Maxey,J. Fluid Mech. 649, 205-231 (2010)],用于计算限制在具有单个底壁或两个壁(狭缝通道)的双周期性几何形状中的颗粒之间的流体动力相互作用在非周期性方向。我们的谱精确 Stokes 求解器在周期性 xy 平面中使用快速傅里叶变换,在垂直于壁(s)的非周期性 z 方向上使用 Chebyshev 多项式。我们将问题分解为两个问题。第一个问题是在存在颗粒(源项)的情况下的双周期性子问题,在 z 方向上具有自由空间边界条件,我们通过借鉴最近一种用于快速评估双周期性几何静电相互作用的方法[Maxian 等人,J. Chem. Phys. 154, 204107 (2021)]来解决该问题。第二个问题是校正子问题,以在壁(s)上施加边界条件。我们不使用传统的高斯核,而是使用半圆核的指数来模拟由于颗粒存在而产生的源项(体力),并提供最佳的核参数值,以确保具有给定流体动力半径的至少两位数字精度和旋转和平移不变性。我们的求解器的计算时间在图形处理单元中实现,与颗粒数量呈线性比例,并且允许在不到一秒的时间内对沉降胶体微滚轴的层进行计算,计算约一百万颗粒。我们发现,在狭缝通道中,驱动的密集微滚轴悬浮液保持与单个壁上方相同的两层结构,但由于限制增加,其集体速度大大降低。