Sprinkle Brennan, van der Wee Ernest B, Luo Yixiang, Driscoll Michelle M, Donev Aleksandar
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA.
Soft Matter. 2020 Sep 14;16(34):7982-8001. doi: 10.1039/d0sm00879f. Epub 2020 Aug 10.
We perform detailed computational and experimental measurements of the driven dynamics of a dense, uniform suspension of sedimented microrollers driven by a magnetic field rotating around an axis parallel to the floor. We develop a lubrication-corrected Brownian dynamics method for dense suspensions of driven colloids sedimented above a bottom wall. The numerical method adds lubrication friction between nearby pairs of particles, as well as particles and the bottom wall, to a minimally-resolved model of the far-field hydrodynamic interactions. Our experiments combine fluorescent labeling with particle tracking to trace the trajectories of individual particles in a dense suspension, and to measure their propulsion velocities. Previous computational studies [B. Sprinkle et al., J. Chem. Phys., 2017, 147, 244103] predicted that at sufficiently high densities a uniform suspension of microrollers separates into two layers, a slow monolayer right above the wall, and a fast layer on top of the bottom layer. Here we verify this prediction, showing good quantitative agreement between the bimodal distribution of particle velocities predicted by the lubrication-corrected Brownian dynamics and those measured in the experiments. The computational method accurately predicts the rate at which particles are observed to switch between the slow and fast layers in the experiments. We also use our numerical method to demonstrate the important role that pairwise lubrication plays in motility-induced phase separation in dense monolayers of colloidal microrollers, as recently suggested for suspensions of Quincke rollers [D. Geyer et al., Phys. Rev. X, 2019, 9(3), 031043].
我们对由围绕平行于地面的轴旋转的磁场驱动的致密、均匀的沉降微辊悬浮液的驱动动力学进行了详细的计算和实验测量。我们为沉降在底壁上方的驱动胶体的致密悬浮液开发了一种润滑校正的布朗动力学方法。该数值方法将附近粒子对之间以及粒子与底壁之间的润滑摩擦添加到远场流体动力学相互作用的最小分辨率模型中。我们的实验将荧光标记与粒子跟踪相结合,以追踪致密悬浮液中单个粒子的轨迹,并测量它们的推进速度。先前的计算研究[B. Sprinkle等人,《化学物理杂志》,2017年,147卷,244103期]预测,在足够高的密度下,微辊的均匀悬浮液会分离成两层,一层是紧挨着壁的慢速单层,另一层是在底层之上的快速层。在这里,我们验证了这一预测,表明润滑校正的布朗动力学预测的粒子速度双峰分布与实验测量的结果之间具有良好的定量一致性。该计算方法准确地预测了在实验中观察到粒子在慢速层和快速层之间切换的速率。我们还使用我们的数值方法来证明成对润滑在胶体微辊致密单层中的运动诱导相分离中所起的重要作用,正如最近对昆克辊悬浮液所提出的那样[D. Geyer等人,《物理评论X》,2019年,9(3),031043]。