Suppr超能文献

深度学习在预测新血液透析患者低血清白蛋白中的应用。

Application of deep learning to predict the low serum albumin in new hemodialysis patients.

作者信息

Yang Cheng-Hong, Chen Yin-Syuan, Chen Jin-Bor, Huang Hsiu-Chen, Chuang Li-Yeh

机构信息

Department of Information Management, Tainan University of Technology, Tainan, Taiwan.

Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.

出版信息

Nutr Metab (Lond). 2023 Apr 24;20(1):24. doi: 10.1186/s12986-023-00746-z.

Abstract

BACKGROUND

Serum albumin level is a crucial nutritional indicator for patients on dialysis. Approximately one-third of patients on hemodialysis (HD) have protein malnutrition. Therefore, the serum albumin level of patients on HD is strongly correlated with mortality.

METHODS

In study, the data sets were obtained from the longitudinal electronic health records of the largest HD center in Taiwan from July 2011 to December 2015, included 1,567 new patients on HD who met the inclusion criteria. Multivariate logistic regression was performed to evaluate the association of clinical factors with low serum albumin, and the grasshopper optimization algorithm (GOA) was used for feature selection. The quantile g-computation method was used to calculate the weight ratio of each factor. Machine learning and deep learning (DL) methods were used to predict the low serum albumin. The area under the curve (AUC) and accuracy were calculated to determine the model performance.

RESULTS

Age, gender, hypertension, hemoglobin, iron, ferritin, sodium, potassium, calcium, creatinine, alkaline phosphatase, and triglyceride levels were significantly associated with low serum albumin. The AUC and accuracy of the GOA quantile g-computation weight model combined with the Bi-LSTM method were 98% and 95%, respectively.

CONCLUSION

The GOA method was able to rapidly identify the optimal combination of factors associated with serum albumin in patients on HD, and the quantile g-computation with DL methods could determine the most effective GOA quantile g-computation weight prediction model. The serum albumin status of patients on HD can be predicted by the proposed model and accordingly provide patients with better a prognostic care and treatment.

摘要

背景

血清白蛋白水平是透析患者重要的营养指标。约三分之一的血液透析(HD)患者存在蛋白质营养不良。因此,HD患者的血清白蛋白水平与死亡率密切相关。

方法

在本研究中,数据集来自台湾最大的HD中心2011年7月至2015年12月的纵向电子健康记录,纳入了1567名符合纳入标准的新HD患者。采用多变量逻辑回归评估临床因素与低血清白蛋白的关联,并使用蚱蜢优化算法(GOA)进行特征选择。采用分位数g计算法计算各因素的权重比。使用机器学习和深度学习(DL)方法预测低血清白蛋白。计算曲线下面积(AUC)和准确率以确定模型性能。

结果

年龄、性别、高血压、血红蛋白、铁、铁蛋白、钠、钾、钙、肌酐、碱性磷酸酶和甘油三酯水平与低血清白蛋白显著相关。GOA分位数g计算权重模型与双向长短期记忆网络(Bi-LSTM)方法相结合的AUC和准确率分别为98%和95%。

结论

GOA方法能够快速识别HD患者血清白蛋白相关因素的最佳组合,DL方法的分位数g计算可以确定最有效的GOA分位数g计算权重预测模型。所提出的模型可预测HD患者的血清白蛋白状态,从而为患者提供更好的预后护理和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2009/10127046/13fbdea06045/12986_2023_746_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验