Suppr超能文献

使用秩揭示 QR 算法的储层计算的时移选择。

Time-shift selection for reservoir computing using a rank-revealing QR algorithm.

机构信息

US Naval Research Laboratory, Washington, DC 20375, USA.

Department of Mechanical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA.

出版信息

Chaos. 2023 Apr 1;33(4). doi: 10.1063/5.0141251.

Abstract

Reservoir computing, a recurrent neural network paradigm in which only the output layer is trained, has demonstrated remarkable performance on tasks such as prediction and control of nonlinear systems. Recently, it was demonstrated that adding time-shifts to the signals generated by a reservoir can provide large improvements in performance accuracy. In this work, we present a technique to choose the time-shifts by maximizing the rank of the reservoir matrix using a rank-revealing QR algorithm. This technique, which is not task dependent, does not require a model of the system and, therefore, is directly applicable to analog hardware reservoir computers. We demonstrate our time-shift selection technique on two types of reservoir computer: an optoelectronic reservoir computer and the traditional recurrent network with a t a n h activation function. We find that our technique provides improved accuracy over random time-shift selection in essentially all cases.

摘要

储层计算是一种递归神经网络范例,其中仅对输出层进行训练,它在预测和控制非线性系统等任务上表现出了显著的性能。最近,有人证明,向储层产生的信号添加时移可以大大提高性能精度。在这项工作中,我们提出了一种使用秩揭示 QR 算法最大化储层矩阵秩的技术来选择时移。这种技术与任务无关,不需要系统模型,因此可以直接应用于模拟硬件储层计算机。我们在两种类型的储层计算机上演示了我们的时移选择技术:光电储层计算机和具有 t a n h 激活函数的传统递归网络。我们发现,我们的技术在几乎所有情况下都提供了比随机时移选择更高的精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验