Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain.
Departamento I+D+i, Alquizvetek S.L, Zaragoza, 50013, Zaragoza, Spain.
Food Microbiol. 2023 Aug;113:104285. doi: 10.1016/j.fm.2023.104285. Epub 2023 Apr 12.
Pulsed Electric Fields (PEF) technology is regarded as one of the most interesting alternatives to current food preservation methods, due to its capability to inactivate vegetative microorganisms while leaving the product's organoleptic and nutritional properties mostly unchanged. However, many aspects regarding the mechanisms of bacterial inactivation by PEF are still not fully understood. The aim of this study was to obtain further insight into the mechanisms responsible for the increased resistance to PEF of a Salmonella Typhimurium SL1344 variant (SL1344-RS, Sagarzazu et al., 2013), and to quantify the impact that the acquisition of PEF resistance has on other aspects of S. enterica physiology, such as growth fitness, biofilm formation ability, virulence and antibiotic resistance. WGS, RNAseq and qRT-PCR assays indicated that the increased PEF resistance of the SL1344-RS variant is due to a higher RpoS activity caused by a mutation in the hnr gene. This increased RpoS activity also results in higher resistance to multiple stresses (acidic, osmotic, oxidative, ethanol and UV-C, but not to heat and HHP), decreased growth rate in M9-Gluconate (but not in TSB-YE or LB-DPY), increased ability to adhere to Caco-2 cells (but no significant change in invasiveness) and enhanced antibiotic resistance (to six out of eight agents). This study significantly contributes to the understanding of the mechanisms of the development of stress resistance in Salmonellae and underscores the crucial role played by RpoS in this process. Further studies are needed to determine whether this PEF-resistant variant would represent a higher, equal or lower associated hazard than the parental strain.
脉冲电场 (PEF) 技术被认为是目前食品保鲜方法中最有前途的替代方法之一,因为它能够在不改变产品感官和营养特性的情况下杀死营养细胞微生物。然而,关于 PEF 杀菌机制的许多方面仍未完全了解。本研究旨在深入了解导致鼠伤寒沙门氏菌 SL1344 变异株 (SL1344-RS,Sagarzazu 等人,2013 年) 对 PEF 抵抗力增加的机制,并量化获得 PEF 抗性对沙门氏菌生理其他方面的影响,例如生长适应性、生物膜形成能力、毒力和抗生素抗性。WGS、RNAseq 和 qRT-PCR 分析表明,SL1344-RS 变异株对 PEF 的更高抗性是由于 hnr 基因突变导致 RpoS 活性增加所致。这种增加的 RpoS 活性还导致对多种应激(酸性、渗透压、氧化、乙醇和 UV-C,但对热和 HHP 不敏感)、M9-Gluconate 中生长速度降低(但在 TSB-YE 或 LB-DPY 中没有)、对 Caco-2 细胞的黏附能力增强(但侵袭性没有显著变化)和抗生素抗性增强(对八种药物中的六种)。本研究对沙门氏菌应激抗性发展机制的理解有重要贡献,并强调了 RpoS 在这一过程中的关键作用。需要进一步研究以确定这种具有 PEF 抗性的变异株是否比亲本菌株具有更高、相等或更低的相关风险。