文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过靶向 CD5L 克服抗 VEGF 治疗的适应性耐药。

Overcoming adaptive resistance to anti-VEGF therapy by targeting CD5L.

机构信息

Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.

Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.

出版信息

Nat Commun. 2023 Apr 26;14(1):2407. doi: 10.1038/s41467-023-36910-5.


DOI:10.1038/s41467-023-36910-5
PMID:37100807
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10133315/
Abstract

Antiangiogenic treatment targeting the vascular endothelial growth factor (VEGF) pathway is a powerful tool to combat tumor growth and progression; however, drug resistance frequently emerges. We identify CD5L (CD5 antigen-like precursor) as an important gene upregulated in response to antiangiogenic therapy leading to the emergence of adaptive resistance. By using both an RNA-aptamer and a monoclonal antibody targeting CD5L, we are able to abate the pro-angiogenic effects of CD5L overexpression in both in vitro and in vivo settings. In addition, we find that increased expression of vascular CD5L in cancer patients is associated with bevacizumab resistance and worse overall survival. These findings implicate CD5L as an important factor in adaptive resistance to antiangiogenic therapy and suggest that modalities to target CD5L have potentially important clinical utility.

摘要

抗血管内皮生长因子 (VEGF) 途径的血管生成治疗是对抗肿瘤生长和进展的有力工具;然而,耐药性经常出现。我们确定 CD5L(CD5 抗原样前体)作为一种重要的基因,在抗血管生成治疗后上调,导致适应性耐药的出现。通过使用针对 CD5L 的 RNA-适体和单克隆抗体,我们能够减轻 CD5L 过表达在体外和体内环境中的促血管生成作用。此外,我们发现癌症患者血管 CD5L 的表达增加与贝伐单抗耐药和总体生存率降低有关。这些发现表明 CD5L 是对血管生成治疗产生适应性耐药的一个重要因素,并表明靶向 CD5L 的方法具有潜在的重要临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/3265634e3de3/41467_2023_36910_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/9f0c822c3616/41467_2023_36910_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/444dfd6f5509/41467_2023_36910_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/f7bee20829a2/41467_2023_36910_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/41c971af2e45/41467_2023_36910_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/d453ab2ff570/41467_2023_36910_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/9794e0e26fac/41467_2023_36910_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/0b894b30dfef/41467_2023_36910_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/3265634e3de3/41467_2023_36910_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/9f0c822c3616/41467_2023_36910_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/444dfd6f5509/41467_2023_36910_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/f7bee20829a2/41467_2023_36910_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/41c971af2e45/41467_2023_36910_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/d453ab2ff570/41467_2023_36910_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/9794e0e26fac/41467_2023_36910_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/0b894b30dfef/41467_2023_36910_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0363/10133315/3265634e3de3/41467_2023_36910_Fig8_HTML.jpg

相似文献

[1]
Overcoming adaptive resistance to anti-VEGF therapy by targeting CD5L.

Nat Commun. 2023-4-26

[2]
A Quininib Analogue and Cysteinyl Leukotriene Receptor Antagonist Inhibits Vascular Endothelial Growth Factor (VEGF)-independent Angiogenesis and Exerts an Additive Antiangiogenic Response with Bevacizumab.

J Biol Chem. 2017-3-3

[3]
Targeting the insulin growth factor and the vascular endothelial growth factor pathways in ovarian cancer.

Mol Cancer Ther. 2012-6-13

[4]
Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor.

Oncologist. 2015-6

[5]
Combined inhibition of IL1, CXCR1/2, and TGFβ signaling pathways modulates in-vivo resistance to anti-VEGF treatment.

Anticancer Drugs. 2016-1

[6]
Anti-EGFR and antiangiogenic monoclonal antibodies in metastatic non-small-cell lung cancer.

Expert Opin Biol Ther. 2016-3-22

[7]
Antiangiogenic therapies for high-grade glioma.

Nat Rev Neurol. 2009-10-13

[8]
Therapeutic approaches targeting tumor vasculature in gastrointestinal cancers.

Front Biosci (Elite Ed). 2011-1-1

[9]
Antiangiogenic therapy in malignant glioma: promise and challenge.

Curr Pharm Des. 2007

[10]
Vascular endothelial growth factor and bevacitumab in breast cancer.

Breast Cancer. 2007

引用本文的文献

[1]
and alleviate enterotoxigenic -induced intestinal inflammation and stabilize intestinal microorganisms and serum metabolites in piglets.

Anim Nutr. 2025-6-20

[2]
Tumor microenvironment-driven resistance to immunotherapy in non-small cell lung cancer: strategies for Cold-to-Hot tumor transformation.

Cancer Drug Resist. 2025-4-24

[3]
IMGN853 Induces Autophagic Cell Death in Combination Therapy for Ovarian Cancer.

Cancer Res Commun. 2025-3-1

[4]
Real-World Evidence of Bevacizumab and Panitumumab Drug Resistance and Drug Ineffectiveness from EudraVigilance Database.

Cancers (Basel). 2025-2-16

[5]
CRHBP, a novel multiple cancer biomarker connected with better prognosis and anti-tumorigenicity.

Cancer Cell Int. 2024-11-29

[6]
Clonorchis sinensis infection contributes to hepatocellular carcinoma progression via enhancing angiogenesis.

PLoS Negl Trop Dis. 2024-11

[7]
The efficacy of first and second immunotherapy exposure in patients with recurrent or metastatic cervical cancer.

Cancer Med. 2024-10

[8]
Colorectal cancer: Recent advances in management and treatment.

World J Clin Oncol. 2024-9-24

[9]
SOX4-BMI1 axis promotes non-small cell lung cancer progression and facilitates angiogenesis by suppressing ZNF24.

Cell Death Dis. 2024-9-30

[10]
Potential therapeutic targets of gastric cancer explored under endogenous network modeling of clinical data.

Sci Rep. 2024-6-7

本文引用的文献

[1]
Anti-GRP-R monoclonal antibody antitumor therapy against neuroblastoma.

PLoS One. 2022

[2]
Tumors defective in homologous recombination rely on oxidative metabolism: relevance to treatments with PARP inhibitors.

EMBO Mol Med. 2020-6-8

[3]
Human endotrophin as a driver of malignant tumor growth.

JCI Insight. 2019-3-21

[4]
A Novel Anti-LILRB4 CAR-T Cell for the Treatment of Monocytic AML.

Mol Ther. 2018-8-7

[5]
Endothelial cell CD36 optimizes tissue fatty acid uptake.

J Clin Invest. 2018-7-26

[6]
Macrophages Facilitate Resistance to Anti-VEGF Therapy by Altered VEGFR Expression.

Clin Cancer Res. 2017-8-29

[7]
In vitro selection of RNA aptamers against CA125 tumor marker in ovarian cancer and its study by optical biosensing.

Methods. 2016-3-15

[8]
In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

PLoS One. 2015-7-29

[9]
AIM/CD5L: a key protein in the control of immune homeostasis and inflammatory disease.

J Leukoc Biol. 2015-6-5

[10]
Circulating AIM prevents hepatocellular carcinoma through complement activation.

Cell Rep. 2014-10-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索