Suppr超能文献

特征加权弹性网络:利用“特征的特征”实现更好的预测。

Feature-weighted elastic net: using "features of features" for better prediction.

作者信息

Tay J Kenneth, Aghaeepour Nima, Hastie Trevor, Tibshirani Robert

机构信息

Department of Statistics, Stanford University.

Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University.

出版信息

Stat Sin. 2023 Jan;33(1):259-279. doi: 10.5705/ss.202020.0226.

Abstract

In some supervised learning settings, the practitioner might have additional information on the features used for prediction. We propose a new method which leverages this additional information for better prediction. The method, which we call the ("fwelnet"), uses these "features of features" to adapt the relative penalties on the feature coefficients in the elastic net penalty. In our simulations, fwelnet outperforms the lasso in terms of test mean squared error and usually gives an improvement in true positive rate or false positive rate for feature selection. We also apply this method to early prediction of preeclampsia, where fwelnet outperforms the lasso in terms of 10-fold cross-validated area under the curve (0.86 vs. 0.80). We also provide a connection between fwelnet and the group lasso and suggest how fwelnet might be used for multi-task learning.

摘要

在一些监督学习环境中,从业者可能对用于预测的特征有额外信息。我们提出了一种新方法,该方法利用这些额外信息进行更好的预测。我们将此方法称为(“fwelnet”),它使用这些“特征的特征”来调整弹性网络惩罚中特征系数的相对惩罚。在我们的模拟中,fwelnet在测试均方误差方面优于套索回归,并且在特征选择的真阳性率或假阳性率方面通常有所改善。我们还将此方法应用于子痫前期的早期预测,在该应用中,fwelnet在10折交叉验证曲线下面积方面优于套索回归(0.86对0.80)。我们还提供了fwelnet与组套索回归之间的联系,并说明了fwelnet如何用于多任务学习。

相似文献

1
Feature-weighted elastic net: using "features of features" for better prediction.
Stat Sin. 2023 Jan;33(1):259-279. doi: 10.5705/ss.202020.0226.
3
Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data.
BMC Bioinformatics. 2011 May 9;12:138. doi: 10.1186/1471-2105-12-138.
4
Early prediction of preeclampsia via machine learning.
Am J Obstet Gynecol MFM. 2020 May;2(2):100100. doi: 10.1016/j.ajogmf.2020.100100. Epub 2020 Mar 14.
5
Repeated Sieving for Prediction Model Building with High-Dimensional Data.
J Pers Med. 2024 Jul 19;14(7):769. doi: 10.3390/jpm14070769.
6
Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease.
Comput Methods Programs Biomed. 2018 Aug;162:19-45. doi: 10.1016/j.cmpb.2018.04.028. Epub 2018 May 3.
7
Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on fMRI Dataset.
Front Neurosci. 2020 Feb 12;14:60. doi: 10.3389/fnins.2020.00060. eCollection 2020.
8
Logistic LASSO and Elastic Net to Characterize Vitamin D Deficiency in a Hypertensive Obese Population.
Metab Syndr Relat Disord. 2020 Mar;18(2):79-85. doi: 10.1089/met.2019.0104. Epub 2020 Jan 13.
9
Stabilizing l1-norm prediction models by supervised feature grouping.
J Biomed Inform. 2016 Feb;59:149-68. doi: 10.1016/j.jbi.2015.11.012. Epub 2015 Dec 9.
10
Identification of clinically relevant features in hypertensive patients using penalized regression: a case study of cardiovascular events.
Med Biol Eng Comput. 2019 Sep;57(9):2011-2026. doi: 10.1007/s11517-019-02007-9. Epub 2019 Jul 25.

引用本文的文献

1
Prediction Model of Powdery Mildew Disease Index in Rubber Trees Based on Machine Learning.
Plants (Basel). 2025 Aug 3;14(15):2402. doi: 10.3390/plants14152402.
3
Adaptive Use of Co-Data Through Empirical Bayes for Bayesian Additive Regression Trees.
Stat Med. 2025 Feb 28;44(5):e70004. doi: 10.1002/sim.70004.
4
Fast Marginal Likelihood Estimation of Penalties for Group-Adaptive Elastic Net.
J Comput Graph Stat. 2022 Nov 9;32(3):950-960. doi: 10.1080/10618600.2022.2128809. eCollection 2023.
5
Penalized regression with multiple sources of prior effects.
Bioinformatics. 2023 Dec 1;39(12). doi: 10.1093/bioinformatics/btad680.
6
ecpc: an R-package for generic co-data models for high-dimensional prediction.
BMC Bioinformatics. 2023 Apr 26;24(1):172. doi: 10.1186/s12859-023-05289-x.
7
Hierarchical Ridge Regression for Incorporating Prior Information in Genomic Studies.
J Data Sci. 2022 Jan;20(1):34-50. doi: 10.6339/21-jds1030. Epub 2021 Dec 13.
8
Characterization of the treatment-naive immune microenvironment in melanoma with mutation.
J Immunother Cancer. 2022 Apr;10(4). doi: 10.1136/jitc-2021-004095.

本文引用的文献

2
The prediction of late-onset preeclampsia: Results from a longitudinal proteomics study.
PLoS One. 2017 Jul 24;12(7):e0181468. doi: 10.1371/journal.pone.0181468. eCollection 2017.
3
IPF-LASSO: Integrative -Penalized Regression with Penalty Factors for Prediction Based on Multi-Omics Data.
Comput Math Methods Med. 2017;2017:7691937. doi: 10.1155/2017/7691937. Epub 2017 May 4.
4
Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia.
N Engl J Med. 2016 Jan 7;374(1):13-22. doi: 10.1056/NEJMoa1414838.
5
Better prediction by use of co-data: adaptive group-regularized ridge regression.
Stat Med. 2016 Feb 10;35(3):368-81. doi: 10.1002/sim.6732. Epub 2015 Sep 13.
6
Weighted lasso with data integration.
Stat Appl Genet Mol Biol. 2011 Aug 29;10(1):/j/sagmb.2011.10.issue-1/sagmb.2011.10.1.1703/sagmb.2011.10.1.1703.xml. doi: 10.2202/1544-6115.1703.
7
Impact of interventions to prevent and manage preeclampsia and eclampsia on stillbirths.
BMC Public Health. 2011 Apr 13;11 Suppl 3(Suppl 3):S6. doi: 10.1186/1471-2458-11-S3-S6.
9
Incorporating prior knowledge of predictors into penalized classifiers with multiple penalty terms.
Bioinformatics. 2007 Jul 15;23(14):1775-82. doi: 10.1093/bioinformatics/btm234. Epub 2007 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验