Tay J Kenneth, Aghaeepour Nima, Hastie Trevor, Tibshirani Robert
Department of Statistics, Stanford University.
Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University.
Stat Sin. 2023 Jan;33(1):259-279. doi: 10.5705/ss.202020.0226.
In some supervised learning settings, the practitioner might have additional information on the features used for prediction. We propose a new method which leverages this additional information for better prediction. The method, which we call the ("fwelnet"), uses these "features of features" to adapt the relative penalties on the feature coefficients in the elastic net penalty. In our simulations, fwelnet outperforms the lasso in terms of test mean squared error and usually gives an improvement in true positive rate or false positive rate for feature selection. We also apply this method to early prediction of preeclampsia, where fwelnet outperforms the lasso in terms of 10-fold cross-validated area under the curve (0.86 vs. 0.80). We also provide a connection between fwelnet and the group lasso and suggest how fwelnet might be used for multi-task learning.
在一些监督学习环境中,从业者可能对用于预测的特征有额外信息。我们提出了一种新方法,该方法利用这些额外信息进行更好的预测。我们将此方法称为(“fwelnet”),它使用这些“特征的特征”来调整弹性网络惩罚中特征系数的相对惩罚。在我们的模拟中,fwelnet在测试均方误差方面优于套索回归,并且在特征选择的真阳性率或假阳性率方面通常有所改善。我们还将此方法应用于子痫前期的早期预测,在该应用中,fwelnet在10折交叉验证曲线下面积方面优于套索回归(0.86对0.80)。我们还提供了fwelnet与组套索回归之间的联系,并说明了fwelnet如何用于多任务学习。