Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
Department of Geology, University at Buffalo, Buffalo, New York, USA.
Ecol Appl. 2023 Jul;33(5):e2866. doi: 10.1002/eap.2866. Epub 2023 May 29.
Biological indicators are commonly used to evaluate ecosystem condition. However, their use is often constrained by the availability of information with which to assign species-specific indicator values, which reflect species' responses to the environmental conditions being evaluated by the indicator. As these responses are driven by underlying traits, and trait data for numerous species are available in publicly accessible databases, one possible approach to approximating missing bioindicator values is through traits. We used the Floristic Quality Assessment (FQA) framework and its component indicator of disturbance sensitivity, species-specific ecological conservatism scores (C-scores), as a study system to test the potential of this approach. We tested the consistency of relationships between trait values and expert-assigned C-scores and the trait-based predictability of C-scores across five regions. Furthermore, as a proof-of-concept exercise, we used a multi-trait model to try to reconstruct C-scores, and compared the model predictions to expert-assigned scores. Out of 20 traits tested, there was evidence of regional consistency for germination rate, growth rate, propagation type, dispersal unit, and leaf nitrogen. However, the individual traits showed low predictability (R = 0.1-0.2) for C-scores, and a multi-trait model produced substantial classification errors; in many cases, >50% of species were misclassified. The mismatches may largely be explained by the inability to generalize regionally varying C-scores from geographically neutral/naive trait data stored in databases, and the synthetic nature of C-scores. Based on these results, we recommend possible next steps for expanding the availability of species-based bioindication frameworks such as the FQA. These steps include increasing the availability of geographic and environmental data in trait databases, incorporating data about intraspecific trait variability into these databases, conducting hypothesis-driven investigations into trait-indicator relationships, and having regional experts review our results to determine if there are patterns in the species that were correctly or incorrectly classified.
生物指标通常用于评估生态系统状况。然而,它们的使用往往受到可用信息的限制,这些信息用于分配特定物种的指标值,反映物种对指标所评估的环境条件的响应。由于这些响应是由潜在的特征驱动的,并且许多物种的特征数据都可以在公共访问的数据库中获得,因此一种近似缺失生物指标值的可能方法是通过特征。我们使用了 Floristic Quality Assessment (FQA) 框架及其组成部分的干扰敏感性指标,即物种特异性生态保守性分数 (C-scores),作为研究系统来测试这种方法的潜力。我们测试了特征值与专家分配的 C-scores 之间关系的一致性,以及跨五个地区的 C-scores 的基于特征的可预测性。此外,作为概念验证练习,我们使用多特征模型来尝试重建 C-scores,并将模型预测与专家分配的分数进行比较。在测试的 20 个特征中,有证据表明发芽率、生长率、繁殖类型、扩散单位和叶片氮等特征在区域上具有一致性。然而,个别特征对 C-scores 的预测性较低(R = 0.1-0.2),并且多特征模型产生了大量的分类错误;在许多情况下,超过 50%的物种被错误分类。这些不匹配主要可以解释为无法从存储在数据库中的地理中性/天真特征数据中概括区域变化的 C-scores,以及 C-scores 的合成性质。基于这些结果,我们为扩大 FQA 等基于物种的生物指示框架的可用性提出了可能的下一步措施。这些步骤包括增加特征数据库中地理和环境数据的可用性,将关于种内特征变异性的数据纳入这些数据库,进行关于特征-指标关系的假设驱动研究,以及让区域专家审查我们的结果,以确定在正确或错误分类的物种中是否存在模式。