Department of Chemistry, University of Zurich, CH-8057 Zürich, Switzerland.
CP2K Foundation, CH-8006 Zurich, Switzerland.
J Chem Phys. 2023 Apr 28;158(16). doi: 10.1063/5.0144493.
The development of novel double-hybrid density functionals offers new levels of accuracy and is leading to fresh insights into the fundamental properties of matter. Hartree-Fock exact exchange and correlated wave function methods, such as second-order Møller-Plesset (MP2) and direct random phase approximation (dRPA), are usually required to build such functionals. Their high computational cost is a concern, and their application to large and periodic systems is, therefore, limited. In this work, low-scaling methods for Hartree-Fock exchange (HFX), SOS-MP2, and direct RPA energy gradients are developed and implemented in the CP2K software package. The use of the resolution-of-the-identity approximation with a short range metric and atom-centered basis functions leads to sparsity, allowing for sparse tensor contractions to take place. These operations are efficiently performed with the newly developed Distributed Block-sparse Tensors (DBT) and Distributed Block-sparse Matrices (DBM) libraries, which scale to hundreds of graphics processing unit (GPU) nodes. The resulting methods, resolution-of-the-identity (RI)-HFX, SOS-MP2, and dRPA, were benchmarked on large supercomputers. They exhibit favorable sub-cubic scaling with system size, good strong scaling performance, and GPU acceleration up to a factor of 3. These developments will allow for double-hybrid level calculations of large and periodic condensed phase systems to take place on a more regular basis.
新型双杂交密度泛函的发展提供了新的精度水平,并为物质的基本性质提供了新的见解。通常需要哈特ree-Fock 精确交换和相关波函数方法(如二阶 Møller-Plesset(MP2)和直接随机相位近似(dRPA))来构建此类泛函。它们的计算成本高,因此限制了它们在大型和周期性系统中的应用。在这项工作中,开发并实现了 CP2K 软件包中 Hartree-Fock 交换(HFX)、SOS-MP2 和直接 RPA 能量梯度的低标度方法。使用具有短程度量和原子中心基函数的身份分解逼近导致稀疏性,允许稀疏张量收缩发生。这些操作可以使用新开发的分布式块稀疏张量(DBT)和分布式块稀疏矩阵(DBM)库有效地执行,这些库可以扩展到数百个图形处理单元(GPU)节点。所得的方法,即身份分解(RI)-HFX、SOS-MP2 和 dRPA,在大型超级计算机上进行了基准测试。它们表现出与系统大小的有利次立方缩放、良好的强缩放性能以及高达 3 倍的 GPU 加速。这些发展将使大型周期性凝聚相系统的双杂交水平计算能够更频繁地进行。