文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

植物化学物质对模型脂质膜偶极电位的调节:分子机制、构效关系及其在重组离子通道中的意义

Modulation of the Dipole Potential of Model Lipid Membranes with Phytochemicals: Molecular Mechanisms, Structure-Activity Relationships, and Implications in Reconstituted Ion Channels.

作者信息

Efimova Svetlana S, Ostroumova Olga S

机构信息

Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Science, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.

出版信息

Membranes (Basel). 2023 Apr 21;13(4):453. doi: 10.3390/membranes13040453.


DOI:10.3390/membranes13040453
PMID:37103880
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10141572/
Abstract

Phytochemicals, such as flavonoids, stilbenoids, alkaloids, terpenoids, and related compounds, have a wide range of useful pharmacological properties which cannot be ascribed to binding to a single peptide or protein target alone. Due to the relatively high lipophilicity of phytochemicals, the lipid membrane is thought to mediate their effects via changes in the properties of the lipid matrix, in particular, by modulating the transmembrane distribution of the electrical potential and, consequently, the formation and functioning of the ion channels reconstituted in the lipid bilayers. Therefore, biophysical studies on the interactions between plant metabolites and model lipid membranes are still of interest. This review represents an attempt to provide a critical analysis of a variety of studies on altering membranes and ion channels with phytochemicals via disturbing the potential drop at the membrane-aqueous solution interface. Critical structural motifs and functioning groups in the molecules of plant polyphenols (alkaloids and saponins are identified) and the possible mechanisms of dipole potential modulation with phytochemicals are discussed.

摘要

植物化学物质,如黄酮类化合物、芪类化合物、生物碱、萜类化合物及相关化合物,具有广泛的有益药理特性,这些特性不能单纯归因于与单一肽或蛋白质靶点的结合。由于植物化学物质具有相对较高的亲脂性,脂质膜被认为通过改变脂质基质的性质来介导它们的作用,特别是通过调节跨膜电位分布,进而调节脂质双层中重构的离子通道的形成和功能。因此,关于植物代谢物与模型脂质膜之间相互作用的生物物理研究仍然备受关注。本综述旨在对通过干扰膜 - 水溶液界面处的电位降来改变膜和离子通道的各种植物化学物质相关研究进行批判性分析。讨论了植物多酚(已鉴定出生物碱和皂苷)分子中的关键结构基序和功能基团,以及植物化学物质调节偶极电位的可能机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/97a8bbe28bfd/membranes-13-00453-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/7665bcb90d50/membranes-13-00453-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/6067f9a6e10e/membranes-13-00453-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/2505e3ab4b22/membranes-13-00453-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/28fb7deac8bb/membranes-13-00453-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/a0026fbb647f/membranes-13-00453-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/66a080b519f7/membranes-13-00453-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/632c30f98256/membranes-13-00453-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/3912767bd00e/membranes-13-00453-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/97a8bbe28bfd/membranes-13-00453-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/7665bcb90d50/membranes-13-00453-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/6067f9a6e10e/membranes-13-00453-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/2505e3ab4b22/membranes-13-00453-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/28fb7deac8bb/membranes-13-00453-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/a0026fbb647f/membranes-13-00453-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/66a080b519f7/membranes-13-00453-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/632c30f98256/membranes-13-00453-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/3912767bd00e/membranes-13-00453-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/988f/10141572/97a8bbe28bfd/membranes-13-00453-g009.jpg

相似文献

[1]
Modulation of the Dipole Potential of Model Lipid Membranes with Phytochemicals: Molecular Mechanisms, Structure-Activity Relationships, and Implications in Reconstituted Ion Channels.

Membranes (Basel). 2023-4-21

[2]
Alkaloids Modulate the Functioning of Ion Channels Produced by Antimicrobial Agents via an Influence on the Lipid Host.

Front Cell Dev Biol. 2020-6-30

[3]
Modifiers of membrane dipole potentials as tools for investigating ion channel formation and functioning.

Int Rev Cell Mol Biol. 2015

[4]
Is the Membrane Lipid Matrix a Key Target for Action of Pharmacologically Active Plant Saponins?

Int J Mol Sci. 2021-3-20

[5]
Ion Channels Induced by Antimicrobial Agents in Model Lipid Membranes are Modulated by Plant Polyphenols Through Surrounding Lipid Media.

J Membr Biol. 2018-3-16

[6]
Potential roles and molecular mechanisms of phytochemicals against cancer.

Food Funct. 2022-9-22

[7]
Membrane Interactions of Phytochemicals as Their Molecular Mechanism Applicable to the Discovery of Drug Leads from Plants.

Molecules. 2015-10-16

[8]
Phytochemicals from Phyllanthus niruri Linn. and their pharmacological properties: a review.

J Pharm Pharmacol. 2006-12

[9]
Membrane dipole modifiers modulate single-length nystatin channels via reducing elastic stress in the vicinity of the lipid mouth of a pore.

Biochim Biophys Acta. 2015-1

[10]
Molecular dynamics simulations of the interactions of medicinal plant extracts and drugs with lipid bilayer membranes.

FEBS J. 2013-5-16

引用本文的文献

[1]
Antimicrobial Action of Essential Oil of : Role of the Bacterial Membrane in the Mechanism of Action.

Antibiotics (Basel). 2025-6-21

[2]
Insights on the Mechanisms of the Protective Action of Naringenin, Naringin and Naringin Dihydrochalcone on Blood Cells in Terms of Their Potential Anti-Atherosclerotic Activity.

Molecules. 2025-1-25

[3]
Emerging Role of Plant-Based Bioactive Compounds as Therapeutics in Parkinson's Disease.

Molecules. 2023-11-14

[4]
The Pharmacological Properties of Red Grape Polyphenol Resveratrol: Clinical Trials and Obstacles in Drug Development.

Nutrients. 2023-10-23

本文引用的文献

[1]
The Degree of Hydroxylation of Phenolic Rings Determines the Ability of Flavonoids and Stilbenes to Inhibit Calcium-Mediated Membrane Fusion.

Nutrients. 2023-2-23

[2]
Discovery of the Potentiator of the Pore-Forming Ability of Lantibiotic Nisin: Perspectives for Anticancer Therapy.

Membranes (Basel). 2022-11-20

[3]
Lipid Microenvironment Modulates the Pore-Forming Ability of Polymyxin B.

Antibiotics (Basel). 2022-10-20

[4]
Flavones: Six Selected Flavones and Their Related Signaling Pathways That Induce Apoptosis in Cancer.

Int J Mol Sci. 2022-9-19

[5]
Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds.

Oxid Med Cell Longev. 2022

[6]
Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity.

Food Chem. 2022-7-30

[7]
Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption.

Food Res Int. 2022-3

[8]
Flavonoids: Classification, Function, and Molecular Mechanisms Involved in Bone Remodelling.

Front Endocrinol (Lausanne). 2021

[9]
Colchicine for the treatment of COVID-19.

Cochrane Database Syst Rev. 2021-10-18

[10]
Oral Curcumin With Piperine as Adjuvant Therapy for the Treatment of COVID-19: A Randomized Clinical Trial.

Front Pharmacol. 2021-5-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索