文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

稳定同位素示踪技术揭示了乙酰基转移酶 1 敲除乳腺癌细胞中葡萄糖命运的改变。

Stable Isotope Tracing Reveals an Altered Fate of Glucose in -Acetyltransferase 1 Knockout Breast Cancer Cells.

机构信息

Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.

Department of Chemistry, University of Louisville, Louisville, KY 40292, USA.

出版信息

Genes (Basel). 2023 Mar 31;14(4):843. doi: 10.3390/genes14040843.


DOI:10.3390/genes14040843
PMID:37107601
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10137864/
Abstract

Breast cancer is one of the leading causes of cancer death. Recent studies found that arylamine -acetyltransferase 1 (NAT1) is frequently upregulated in breast cancer, further suggesting NAT1 could be a potential therapeutic target for breast cancer. Previous publications have established that knockout (KO) in breast cancer cell lines leads to growth reduction both in vitro and in vivo and metabolic changes. These reports suggest that NAT1 contributes to the energy metabolism of breast cancer cells. Proteomic analysis and non-targeted metabolomics suggested that KO may change the fate of glucose as it relates to the TCA/KREB cycle of the mitochondria of breast cancer cells. In this current study, we used [U-C]-glucose stable isotope resolved metabolomics to determine the effect of KO on the metabolic profile of MDA-MB-231 breast cancer cells. We incubated breast cancer cells (MDA-MB-231 cells) and Crispr KO cells (KO#2 and KO#5) with [U-C]-glucose for 24 h. Tracer incubation polar metabolites from the cells were extracted and analyzed by 2DLC-MS, and metabolite differences were compared between the parental and KO cells. Differences consistent between the two KO cells were considered changes due to the loss of NAT1. The data revealed decreases in the C enrichment of TCA/Krebs cycle intermediates in KO cells compared to the MDA-MB-231 cells. Specifically, C-labeled citrate, isocitrate, a-ketoglutarate, fumarate, and malate were all decreased in KO cells. We also detected increased C-labeled -lactate levels in the KO cells and decreased C enrichment in some nucleotides. Pathway analysis showed that arginine biosynthesis, alanine, aspartate and glutamate metabolism, and the TCA cycle were most affected. These data provide additional evidence supporting the impacts of knockout on cellular energy metabolism. The data suggest that NAT1 expression is important for the proper functioning of mitochondria and the flux of glucose through the TCA/Krebs cycle in breast cancer cells. The metabolism changes in the fate of glucose in KO breast cancer cells offer more insight into the role of NAT1 in energy metabolism and the growth of breast cancer cells. These data provide additional evidence that NAT1 may be a useful therapeutic target for breast cancer.

摘要

乳腺癌是癌症死亡的主要原因之一。最近的研究发现,芳基胺乙酰转移酶 1(NAT1)在乳腺癌中经常上调,这进一步表明 NAT1 可能是乳腺癌的潜在治疗靶点。先前的出版物已经确定,在乳腺癌细胞系中敲除(KO)会导致体外和体内生长减少和代谢变化。这些报告表明,NAT1 有助于乳腺癌细胞的能量代谢。蛋白质组分析和非靶向代谢组学表明,KO 可能会改变葡萄糖的命运,因为它与乳腺癌细胞线粒体的 TCA/KREB 循环有关。在本研究中,我们使用 [U-C]-葡萄糖稳定同位素分辨代谢组学来确定 KO 对 MDA-MB-231 乳腺癌细胞代谢谱的影响。我们用 [U-C]-葡萄糖孵育乳腺癌细胞(MDA-MB-231 细胞)和 Crispr KO 细胞(KO#2 和 KO#5)24 小时。从细胞中提取示踪孵育的极性代谢物,并通过 2DLC-MS 进行分析,比较亲本细胞和 KO 细胞之间的代谢物差异。在两个 KO 细胞中一致的差异被认为是由于 NAT1 缺失而导致的变化。数据显示,与 MDA-MB-231 细胞相比,KO 细胞中 TCA/Krebs 循环中间产物的 C 富集减少。具体来说,KO 细胞中的 C 标记柠檬酸、异柠檬酸、a-酮戊二酸、富马酸和苹果酸均减少。我们还检测到 KO 细胞中 C 标记的 -乳 酸水平升高和一些核苷酸中 C 富集减少。通路分析表明,精氨酸生物合成、丙氨酸、天冬氨酸和谷氨酸代谢以及 TCA 循环受到的影响最大。这些数据提供了更多证据支持 NAT1 缺失对细胞能量代谢的影响。数据表明,NAT1 表达对于乳腺癌细胞中线粒体的正常功能和葡萄糖通过 TCA/Krebs 循环的通量很重要。KO 乳腺癌细胞中葡萄糖命运的代谢变化提供了更多关于 NAT1 在能量代谢和乳腺癌细胞生长中的作用的见解。这些数据提供了更多证据表明,NAT1 可能是乳腺癌的一个有用的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/d65ee677d118/genes-14-00843-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/fa65cc3593e8/genes-14-00843-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/98fa65cee026/genes-14-00843-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/aca3fc53903c/genes-14-00843-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/82d84ad0cc00/genes-14-00843-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/509575052ea0/genes-14-00843-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/456884394f91/genes-14-00843-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/b7aecc96f012/genes-14-00843-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/b0f59142adb9/genes-14-00843-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/0f788df815c8/genes-14-00843-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/fa5f82edb50d/genes-14-00843-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/6c5a4999fec8/genes-14-00843-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/c7b5eed9f06f/genes-14-00843-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/d65ee677d118/genes-14-00843-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/fa65cc3593e8/genes-14-00843-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/98fa65cee026/genes-14-00843-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/aca3fc53903c/genes-14-00843-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/82d84ad0cc00/genes-14-00843-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/509575052ea0/genes-14-00843-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/456884394f91/genes-14-00843-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/b7aecc96f012/genes-14-00843-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/b0f59142adb9/genes-14-00843-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/0f788df815c8/genes-14-00843-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/fa5f82edb50d/genes-14-00843-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/6c5a4999fec8/genes-14-00843-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/c7b5eed9f06f/genes-14-00843-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56e/10137864/d65ee677d118/genes-14-00843-g013.jpg

相似文献

[1]
Stable Isotope Tracing Reveals an Altered Fate of Glucose in -Acetyltransferase 1 Knockout Breast Cancer Cells.

Genes (Basel). 2023-3-31

[2]
Deletion of arylamine N-acetyltransferase 1 in MDA-MB-231 human breast cancer cells reduces primary and secondary tumor growth in vivo with no significant effects on metastasis.

Mol Carcinog. 2022-5

[3]
Proteomic analysis of arylamine -acetyltransferase 1 knockout breast cancer cells: Implications in immune evasion and mitochondrial biogenesis.

Toxicol Rep. 2022-7-19

[4]
Knockout of human arylamine N-acetyltransferase 1 (NAT1) in MDA-MB-231 breast cancer cells leads to increased reserve capacity, maximum mitochondrial capacity, and glycolytic reserve capacity.

Mol Carcinog. 2018-7-18

[5]
Dataset for proteomic analysis of arylamine -acetyltransferase 1 knockout MDA-MB-231 breast cancer cells.

Data Brief. 2022-9-24

[6]
CRISPR/Cas9 knockout of human arylamine N-acetyltransferase 1 in MDA-MB-231 breast cancer cells suggests a role in cellular metabolism.

Sci Rep. 2020-6-17

[7]
Upregulation of cytidine deaminase in NAT1 knockout breast cancer cells.

J Cancer Res Clin Oncol. 2023-7

[8]
Human Arylamine -Acetyltransferase 1 (NAT1) Knockout in MDA-MB-231 Breast Cancer Cell Lines Leads to Transcription of NAT2.

Front Pharmacol. 2022-1-3

[9]
Genetic and small molecule inhibition of arylamine N-acetyltransferase 1 reduces anchorage-independent growth in human breast cancer cell line MDA-MB-231.

Mol Carcinog. 2018-2-3

[10]
Untargeted polar metabolomics of transformed MDA-MB-231 breast cancer cells expressing varying levels of human arylamine -acetyltransferase 1.

Metabolomics. 2016-7

本文引用的文献

[1]
Upregulation of cytidine deaminase in NAT1 knockout breast cancer cells.

J Cancer Res Clin Oncol. 2023-7

[2]
Proteomic analysis of arylamine -acetyltransferase 1 knockout breast cancer cells: Implications in immune evasion and mitochondrial biogenesis.

Toxicol Rep. 2022-7-19

[3]
Deletion of arylamine N-acetyltransferase 1 in MDA-MB-231 human breast cancer cells reduces primary and secondary tumor growth in vivo with no significant effects on metastasis.

Mol Carcinog. 2022-5

[4]
Palbociclib treatment alters nucleotide biosynthesis and glutamine dependency in A549 cells.

Cancer Cell Int. 2020-7-1

[5]
CRISPR/Cas9 knockout of human arylamine N-acetyltransferase 1 in MDA-MB-231 breast cancer cells suggests a role in cellular metabolism.

Sci Rep. 2020-6-17

[6]
RNA-sequencing and microarray data mining revealing: the aberrantly expressed mRNAs were related with a poor outcome in the triple negative breast cancer patients.

Ann Transl Med. 2020-3

[7]
Effect arylamine N-acetyltransferase 1 on morphology, adhesion, migration, and invasion of MDA-MB-231 cells: role of matrix metalloproteinases and integrin αV.

Cell Adh Migr. 2020-12

[8]
-Acetyltransferase 1 Knockout Elevates Acetyl Coenzyme A Levels and Reduces Anchorage-Independent Growth in Human Breast Cancer Cell Lines.

J Oncol. 2019-8-20

[9]
Arylamine -Acetyltransferase 1 Regulates Expression of Matrix Metalloproteinase 9 in Breast Cancer Cells: Role of Hypoxia-Inducible Factor 1-.

Mol Pharmacol. 2019-8-23

[10]
Loss of human arylamine N-acetyltransferase I regulates mitochondrial function by inhibition of the pyruvate dehydrogenase complex.

Int J Biochem Cell Biol. 2019-3-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索