DeepSTABp:一种用于预测热蛋白稳定性的深度学习方法。

DeepSTABp: A Deep Learning Approach for the Prediction of Thermal Protein Stability.

机构信息

Computational Systems Biology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany.

出版信息

Int J Mol Sci. 2023 Apr 18;24(8):7444. doi: 10.3390/ijms24087444.

Abstract

Proteins are essential macromolecules that carry out a plethora of biological functions. The thermal stability of proteins is an important property that affects their function and determines their suitability for various applications. However, current experimental approaches, primarily thermal proteome profiling, are expensive, labor-intensive, and have limited proteome and species coverage. To close the gap between available experimental data and sequence information, a novel protein thermal stability predictor called DeepSTABp has been developed. DeepSTABp uses a transformer-based protein language model for sequence embedding and state-of-the-art feature extraction in combination with other deep learning techniques for end-to-end protein melting temperature prediction. DeepSTABp can predict the thermal stability of a wide range of proteins, making it a powerful and efficient tool for large-scale prediction. The model captures the structural and biological properties that impact protein stability, and it allows for the identification of the structural features that contribute to protein stability. DeepSTABp is available to the public via a user-friendly web interface, making it accessible to researchers in various fields.

摘要

蛋白质是执行多种生物学功能的必需大分子。蛋白质的热稳定性是一个重要的特性,它影响蛋白质的功能,并决定其在各种应用中的适用性。然而,目前的实验方法,主要是热蛋白质组分析,既昂贵又费力,且对蛋白质组和物种的覆盖范围有限。为了缩小现有实验数据与序列信息之间的差距,开发了一种名为 DeepSTABp 的新型蛋白质热稳定性预测器。DeepSTABp 使用基于转换器的蛋白质语言模型进行序列嵌入,并结合其他深度学习技术进行端到端蛋白质融解温度预测。DeepSTABp 可以预测广泛的蛋白质的热稳定性,使其成为大规模预测的强大而高效的工具。该模型捕捉到影响蛋白质稳定性的结构和生物学特性,并允许识别对蛋白质稳定性有贡献的结构特征。DeepSTABp 通过用户友好的网络界面供公众使用,使各个领域的研究人员都可以使用它。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d26/10138888/d6e8428df1ba/ijms-24-07444-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索