Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago 7620086, Chile.
Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago 7620086, Chile.
Int J Mol Sci. 2023 Apr 19;24(8):7489. doi: 10.3390/ijms24087489.
For biomedical applications, gelatin is usually modified with methacryloyl groups to obtain gelatin methacryloyl (GelMA), which can be crosslinked by a radical reaction induced by low wavelength light to form mechanically stable hydrogels. The potential of GelMA hydrogels for tissue engineering has been well established, however, one of the main disadvantages of mammalian-origin gelatins is that their sol-gel transitions are close to room temperature, resulting in significant variations in viscosity that can be a problem for biofabrication applications. For these applications, cold-water fish-derived gelatins, such as salmon gelatin, are a good alternative due to their lower viscosity, viscoelastic and mechanical properties, as well as lower sol-gel transition temperatures, when compared with mammalian gelatins. However, information regarding GelMA (with special focus on salmon GelMA as a model for cold-water species) molecular conformation and the effect of pH prior to crosslinking, which is key for fabrication purposes since it will determine final hydrogel's structure, remains scarce. The aim of this work is to characterize salmon gelatin (SGel) and salmon methacryloyl gelatin (SGelMA) molecular configuration at two different acidic pHs (3.6 and 4.8) and to compare them to commercial porcine gelatin (PGel) and methacryloyl porcine gelatin (PGelMA), usually used for biomedical applications. Specifically, we evaluated gelatin and GelMA samples' molecular weight, isoelectric point (IEP), their molecular configuration by circular dichroism (CD), and determined their rheological and thermophysical properties. Results showed that functionalization affected gelatin molecular weight and IEP. Additionally, functionalization and pH affected gelatin molecular structure and rheological and thermal properties. Interestingly, the SGel and SGelMA molecular structure was more sensitive to pH changes, showing differences in gelation temperatures and triple helix formation than PGelMA. This work suggests that SGelMA presents high tunability as a biomaterial for biofabrication, highlighting the importance of a proper GelMA molecular configuration characterization prior to hydrogel fabrication.
用于生物医学应用的明胶通常通过丙烯酰基进行改性以获得明胶甲基丙烯酰基(GelMA),其可以通过由低波长光诱导的自由基反应交联以形成机械稳定的水凝胶。GelMA 水凝胶在组织工程中的潜力已经得到充分证实,然而,哺乳动物来源明胶的主要缺点之一是其溶胶-凝胶转变接近室温,导致粘度发生显著变化,这可能成为生物制造应用的一个问题。对于这些应用,冷水鱼源明胶(如三文鱼明胶)是一种很好的替代品,因为与哺乳动物明胶相比,它们的粘度、粘弹性和力学性能以及溶胶-凝胶转变温度较低。然而,有关 GelMA(特别关注三文鱼 GelMA 作为冷水物种的模型)分子构象以及交联前 pH 值的信息仍然很少,这对于制造目的至关重要,因为它将决定最终水凝胶的结构。本工作旨在表征两种不同酸性 pH 值(3.6 和 4.8)下的三文鱼明胶(SGel)和三文鱼甲基丙烯酰基明胶(SGelMA)的分子构型,并将其与通常用于生物医学应用的商业猪明胶(PGel)和甲基丙烯酰基猪明胶(PGelMA)进行比较。具体而言,我们评估了明胶和 GelMA 样品的分子量、等电点(IEP)、圆二色性(CD)测定的分子构象以及它们的流变和热物理性质。结果表明,功能化影响了明胶的分子量和 IEP。此外,功能化和 pH 值影响了明胶的分子结构以及流变和热性质。有趣的是,SGel 和 SGelMA 的分子结构对 pH 值变化更为敏感,与 PGelMA 相比,其凝胶化温度和三螺旋形成存在差异。这项工作表明,SGelMA 作为生物制造的生物材料具有很高的可调节性,突出了在水凝胶制造之前对 GelMA 分子构象进行适当表征的重要性。