Suppr超能文献

I相 对Mg-8.5Li-6.5Zn-1.2Y合金微观结构和耐腐蚀性的影响

Effect of I-Phase on Microstructure and Corrosion Resistance of Mg-8.5Li-6.5Zn-1.2Y Alloy.

作者信息

Fang Ziming, He Liangxu, Wang Jiaxiu, Ma Xiaochun, Wang Guixiang, Wu Ruizhi, Jin Siyuan, Wang Jiahao, Lu Zihui, Yang Zhenzhao, Krit Boris, Betsofen Sergey, Tashlykova-Bushkevich Iya I

机构信息

Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China.

Moscow Aviation Institute, National Research University, 125993 Moscow, Russia.

出版信息

Materials (Basel). 2023 Apr 10;16(8):3007. doi: 10.3390/ma16083007.

Abstract

The effects of solid solution treatment duration on the corrosion behavior and microstructure behavior of the cast Mg-8.5Li-6.5Zn-1.2Y (wt.%) alloy were investigated. This study revealed that with the treatment time for solid solutions increasing from 2 h to 6 h, the amount of α-Mg phase gradually decreases, and the alloy presents a needle-like shape after solid solution treatment for 6 h. Meanwhile, when the solid solution treatment time increases, the I-phase content drops. Exceptionally, under 4 h of solid solution treatment, the I-phase content has increased, and it is dispersed uniformly over the matrix. What we found in our hydrogen evolution experiments is that the hydrogen evolution rate of the as-cast Mg-8.5Li-6.5Zn-1.2Y alloy following solid solution processing for 4 h is 14.31 mL·cm·h, which is the highest rate. In the electrochemical measurement, the corrosion current density () value of as-cast Mg-8.5Li-6.5Zn-1.2Y alloy following solid solution processing for 4 h is 1.98 × 10, which is the lowest density. These results indicate that solid solution treatment can significantly improve the corrosion resistance of the Mg-8.5Li-6.5Zn-1.2Y alloy. The I-phase and the α-Mg phase are the primary elements influencing the corrosion resistance of the Mg-8.5Li-6.5Zn-1.2Y alloy. The existence of the I-phase and the border dividing the α-Mg phase and β-Li phase easily form galvanic corrosion. Although the I-phase and the boundary between the α-Mg phase and β-Li phase will be corrosion breeding sites, they are more effective in inhibiting corrosion.

摘要

研究了固溶处理时间对铸造Mg-8.5Li-6.5Zn-1.2Y(重量百分比)合金腐蚀行为和微观结构行为的影响。该研究表明,随着固溶处理时间从2小时增加到6小时,α-Mg相的量逐渐减少,并且在固溶处理6小时后合金呈现针状形状。同时,当固溶处理时间增加时,I相含量下降。例外的是,在固溶处理4小时以下时,I相含量增加,并且它均匀地分散在基体上。我们在析氢实验中发现,铸造Mg-8.5Li-6.5Zn-1.2Y合金在固溶处理4小时后的析氢速率为14.31 mL·cm·h,这是最高速率。在电化学测量中,铸造Mg-8.5Li-6.5Zn-1.2Y合金在固溶处理4小时后的腐蚀电流密度()值为1.98×10,这是最低密度。这些结果表明固溶处理可以显著提高Mg-8.5Li-6.5Zn-1.2Y合金的耐腐蚀性。I相和α-Mg相是影响Mg-8.5Li-6.5Zn-1.2Y合金耐腐蚀性的主要元素。I相的存在以及α-Mg相和β-Li相之间的边界容易形成电偶腐蚀。虽然I相以及α-Mg相和β-Li相之间的边界将是腐蚀滋生部位,但它们在抑制腐蚀方面更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验