Suppr超能文献

加速用于电导式气体传感器的气固相互作用:影响因素与改进策略

Accelerating the Gas-Solid Interactions for Conductometric Gas Sensors: Impacting Factors and Improvement Strategies.

作者信息

Zhao Hongchao, Wang Yanjie, Zhou Yong

机构信息

Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.

出版信息

Materials (Basel). 2023 Apr 20;16(8):3249. doi: 10.3390/ma16083249.

Abstract

Metal oxide-based conductometric gas sensors (CGS) have showcased a vast application potential in the fields of environmental protection and medical diagnosis due to their unique advantages of high cost-effectiveness, expedient miniaturization, and noninvasive and convenient operation. Of multiple parameters to assess the sensor performance, the reaction speeds, including response and recovery times during the gas-solid interactions, are directly correlated to a timely recognition of the target molecule prior to scheduling the relevant processing solutions and an instant restoration aimed for subsequent repeated exposure tests. In this review, we first take metal oxide semiconductors (MOSs) as the case study and conclude the impact of the semiconducting type as well as the grain size and morphology of MOSs on the reaction speeds of related gas sensors. Second, various improvement strategies, primarily including external stimulus (heat and photons), morphological and structural regulation, element doping, and composite engineering, are successively introduced in detail. Finally, challenges and perspectives are proposed so as to provide the design references for future high-performance CGS featuring swift detection and regeneration.

摘要

基于金属氧化物的电导式气体传感器(CGS)因其具有高性价比、便于小型化以及非侵入性和操作便捷等独特优势,在环境保护和医学诊断领域展现出了巨大的应用潜力。在评估传感器性能的多个参数中,反应速度,包括气固相互作用过程中的响应时间和恢复时间,直接关系到在安排相关处理方案之前及时识别目标分子以及为后续重复暴露测试进行即时恢复。在本综述中,我们首先以金属氧化物半导体(MOS)为例进行研究,并总结半导体类型以及MOS的晶粒尺寸和形态对相关气体传感器反应速度的影响。其次,详细依次介绍了各种改进策略,主要包括外部刺激(热和光子)、形态和结构调控、元素掺杂以及复合工程。最后,提出了挑战和展望,以便为未来具有快速检测和再生功能的高性能CGS提供设计参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af2f/10146907/627bd88fc47a/materials-16-03249-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验