Suppr超能文献

基于 PSO-BP 和 SSA-BP 分析的激光诱导击穿光谱法快速检测中的重金属含量。

Fast Detection of Heavy Metal Content in by Laser-Induced Breakdown Spectroscopy with PSO-BP and SSA-BP Analysis.

机构信息

College of Mathematics and Computer Science, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China.

College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.

出版信息

Molecules. 2023 Apr 11;28(8):3360. doi: 10.3390/molecules28083360.

Abstract

Fast detection of heavy metals is important to ensure the quality and safety of herbal medicines. In this study, laser-induced breakdown spectroscopy (LIBS) was applied to detect the heavy metal content (Cd, Cu, and Pb) in . Quantitative prediction models were established using a back-propagation neural network (BPNN) optimized using the particle swarm optimization (PSO) algorithm and sparrow search algorithm (SSA), called PSO-BP and SSA-BP, respectively. The results revealed that the BPNN models optimized by PSO and SSA had better accuracy than the BPNN model without optimization. The performance evaluation metrics of the PSO-BP and SSA-BP models were similar. However, the SSA-BP model had two advantages: it was faster and had higher prediction accuracy at low concentrations. For the three heavy metals Cd, Cu and Pb, the prediction correlation coefficient (R) values for the SSA-BP model were 0.972, 0.991 and 0.956; the prediction root mean square error (RMSEP) values were 5.553, 7.810 and 12.906 mg/kg; and the prediction relative percent deviation (RPD) values were 6.04, 10.34 and 4.94, respectively. Therefore, LIBS could be considered a constructive tool for the quantification of Cd, Cu and Pb contents in .

摘要

快速检测重金属对于确保中草药的质量和安全非常重要。本研究采用激光诱导击穿光谱(LIBS)技术检测 中的重金属含量(Cd、Cu 和 Pb)。使用粒子群优化(PSO)算法和麻雀搜索算法(SSA)优化的反向传播神经网络(BPNN)分别建立了 PSO-BP 和 SSA-BP 定量预测模型。结果表明,经 PSO 和 SSA 优化的 BPNN 模型比未经优化的 BPNN 模型具有更高的准确性。PSO-BP 和 SSA-BP 模型的性能评估指标相似,但 SSA-BP 模型具有两个优点:速度更快,在低浓度下具有更高的预测精度。对于 Cd、Cu 和 Pb 这三种重金属,SSA-BP 模型的预测相关系数(R)值分别为 0.972、0.991 和 0.956;预测均方根误差(RMSEP)值分别为 5.553、7.810 和 12.906 mg/kg;预测相对百分偏差(RPD)值分别为 6.04、10.34 和 4.94。因此,LIBS 可被视为定量检测 中 Cd、Cu 和 Pb 含量的一种有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be5f/10143315/d3f734f6f545/molecules-28-03360-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验