文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

顺铂耐药肿瘤的挑战性治疗:现状与未来展望。

The Challenging Treatment of Cisplatin-Resistant Tumors: State of the Art and Future Perspectives.

机构信息

Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy.

出版信息

Molecules. 2023 Apr 12;28(8):3407. doi: 10.3390/molecules28083407.


DOI:10.3390/molecules28083407
PMID:37110640
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10144581/
Abstract

One of the main problems in chemotherapy using platinum drugs as anticancer agents is the resistance phenomenon. Synthesizing and evaluating valid alternative compounds is challenging. This review focuses on the last two years of progress in the studies of platinum (II)- and platinum (IV)-based anticancer complexes. In particular, the research studies reported herein focus on the capability of some platinum-based anticancer agents to bypass resistance to chemotherapy, which is typical of well-known drugs such as cisplatin. Regarding platinum (II) complexes, this review deals with complexes in trans conformation; complexes containing bioactive ligands, as well as those that are differently charged, all experience a different reaction mechanism compared with cisplatin. Regarding platinum (IV) compounds, the focus was on complexes with biologically active ancillary ligands that exert a synergistic effect with platinum (II)-active complexes upon reduction, or those for which controllable activation can be realized thanks to intracellular stimuli.

摘要

在使用铂类药物作为抗癌剂进行化疗时,主要问题之一是耐药现象。合成和评估有效的替代化合物具有挑战性。本综述重点介绍了过去两年中在铂(II)和铂(IV)基抗癌配合物研究方面的进展。特别是,本文所述的研究重点关注了一些铂类抗癌药物克服对顺铂等知名药物的化疗耐药性的能力。关于铂(II)配合物,本综述涉及反式构象的配合物;含有生物活性配体的配合物以及带不同电荷的配合物,与顺铂相比,它们的反应机制都有所不同。关于铂(IV)化合物,重点是具有生物活性辅助配体的配合物,这些配合物在还原时与铂(II)活性配合物具有协同作用,或者由于细胞内刺激可以实现可控激活。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/de7136654535/molecules-28-03407-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/8367587f5f91/molecules-28-03407-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/811a0a778fc1/molecules-28-03407-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/feb55bef2725/molecules-28-03407-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/09a1a0cb433a/molecules-28-03407-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/f8c80278f127/molecules-28-03407-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/96a6985fbbc7/molecules-28-03407-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/52d35a40885c/molecules-28-03407-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/f80ebc466576/molecules-28-03407-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/82823179407c/molecules-28-03407-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/d250f883b8c8/molecules-28-03407-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/d20bbf037008/molecules-28-03407-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/70c51de462e1/molecules-28-03407-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/8c921219742f/molecules-28-03407-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/97b8ae404a73/molecules-28-03407-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/6575968a506c/molecules-28-03407-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/e7f74825239e/molecules-28-03407-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/99c0703430f5/molecules-28-03407-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/de7136654535/molecules-28-03407-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/8367587f5f91/molecules-28-03407-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/811a0a778fc1/molecules-28-03407-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/feb55bef2725/molecules-28-03407-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/09a1a0cb433a/molecules-28-03407-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/f8c80278f127/molecules-28-03407-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/96a6985fbbc7/molecules-28-03407-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/52d35a40885c/molecules-28-03407-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/f80ebc466576/molecules-28-03407-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/82823179407c/molecules-28-03407-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/d250f883b8c8/molecules-28-03407-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/d20bbf037008/molecules-28-03407-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/70c51de462e1/molecules-28-03407-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/8c921219742f/molecules-28-03407-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/97b8ae404a73/molecules-28-03407-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/6575968a506c/molecules-28-03407-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/e7f74825239e/molecules-28-03407-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/99c0703430f5/molecules-28-03407-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3706/10144581/de7136654535/molecules-28-03407-g018.jpg

相似文献

[1]
The Challenging Treatment of Cisplatin-Resistant Tumors: State of the Art and Future Perspectives.

Molecules. 2023-4-12

[2]
Recent Progresses in Conjugation with Bioactive Ligands to Improve the Anticancer Activity of Platinum Compounds.

Curr Med Chem. 2022

[3]
Ruthenium(II) and Platinum(II) Complexes with Biologically Active Aminoflavone Ligands Exhibit In Vitro Anticancer Activity.

Int J Mol Sci. 2021-7-15

[4]
Synthesis and in vitro and in vivo antitumor activity of a series of trans platinum antitumor complexes.

J Med Chem. 1995-8-4

[5]
Platinum(IV)-nitroxyl complexes as possible candidates to circumvent cisplatin resistance in RT112 bladder cancer cells.

Arch Toxicol. 2016-6-15

[6]
Nonclassical platinum antitumor agents: perspectives for design and development of new drugs complementary to cisplatin.

Cancer Invest. 1993

[7]
Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms.

Dalton Trans. 2023-5-9

[8]
Platinum-based anticancer agents: innovative design strategies and biological perspectives.

Med Res Rev. 2003-9

[9]
Recent Developments in the Field of Anticancer Platinum Complexes.

Recent Pat Anticancer Drug Discov. 2006-6

[10]
Advancements in the Use of Platinum Complexes as Anticancer Agents.

Anticancer Agents Med Chem. 2022

引用本文的文献

[1]
Investigating the antimicrobial activity of 1-heteroaryl benzotriazole silver compounds.

RSC Adv. 2025-4-11

[2]
Hybrid Metal Catalysts as Valuable Tools in Organic Synthesis: An Overview of the Recent Advances in Asymmetric C─C Bond Formation Reactions.

Molecules. 2024-10-28

[3]
Anticancer Activity of Metallodrugs and Metallizing Host Defense Peptides-Current Developments in Structure-Activity Relationship.

Int J Mol Sci. 2024-7-3

[4]
Expression of LASS2 Can be Regulated by Dihydroartemisinin to Regulate Cisplatin Chemosensitivity in Bladder Cancer Cells.

Curr Pharm Biotechnol. 2025

[5]
(Pentamethylcyclopentadienyl)chloridoiridium(III) Complex Bearing Bidentate PhPCHCHSPh-κ,κ Ligand.

Biomolecules. 2024-3-30

[6]
CircRNA (circ)_0007823 Contributes to Triple-Negative Breast Cancer Progression and Cisplatin Resistance via the miR-182-5p/FOXO1 Pathway.

Biochem Genet. 2025-4

[7]
Platinum(IV) Prodrugs Incorporating an Indole-Based Derivative, 5-Benzyloxyindole-3-Acetic Acid in the Axial Position Exhibit Prominent Anticancer Activity.

Int J Mol Sci. 2024-2-11

[8]
From the Discovery of Targets to Delivery Systems: How to Decipher and Improve the Metallodrugs' Actions at a Molecular Level.

Pharmaceutics. 2023-7-21

[9]
Versatile Platinum(IV) Prodrugs of Naproxen and Acemetacin as Chemo-Anti-Inflammatory Agents.

Cancers (Basel). 2023-4-26

本文引用的文献

[1]
Enhancing Pt(IV) Complexes' Anticancer Activity upon Encapsulation in Stimuli-Responsive Nanocages.

Adv Healthc Mater. 2023-7

[2]
Focus on the molecular mechanisms of cisplatin resistance based on multi-omics approaches.

Mol Omics. 2023-5-9

[3]
A platinum(IV) prodrug strategy to overcome glutathione-based oxaliplatin resistance.

Commun Chem. 2022-4-6

[4]
A -Pt(II) hedgehog pathway inhibitor complex with cytotoxicity towards breast cancer stem cells and triple negative breast cancer cells.

Dalton Trans. 2022-12-6

[5]
Cisplatin in cancer treatment.

Biochem Pharmacol. 2022-12

[6]
Boronates as hydrogen peroxide-reactive warheads in the design of detection probes, prodrugs, and nanomedicines used in tumors and other diseases.

Drug Deliv Transl Res. 2023-5

[7]
Potent Chlorambucil-Platinum(IV) Prodrugs.

Int J Mol Sci. 2022-9-9

[8]
Can Cisplatin Therapy Be Improved? Pathways That Can Be Targeted.

Int J Mol Sci. 2022-6-29

[9]
Application of Approved Cisplatin Derivatives in Combination Therapy against Different Cancer Diseases.

Molecules. 2022-4-11

[10]
Design of a novel Pt(II) complex to reverse cisplatin-induced resistance in lung cancer a multi-mechanism.

Dalton Trans. 2022-3-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索