Suppr超能文献

Preferential binding of DNA primase to the nuclear matrix in HeLa cells.

作者信息

Wood S H, Collins J M

出版信息

J Biol Chem. 1986 Jun 5;261(16):7119-22.

PMID:3711079
Abstract

Studies of the spatial organization of DNA replication have provided increasing evidence of the importance of the nuclear matrix. We have previously reported a relationship between rates of DNA synthesis and the differential binding of DNA polymerase alpha to the nuclear matrix over the S-phase. We now report the detection of DNA primase bound to the HeLa nuclear matrix. Matrix-bound primase was measured both indirectly, by the incorporation of [32P]dAMP into an unprimed single-stranded template, poly(dT), and directly, by the incorporation of [3H]AMP into matrix DNA. Characteristics of this system include a requirement for ATP, inhibition by adenosine 5'-O-(thiotriphosphate), a primase inhibitor, and insensitivity to aphidicolin and alpha-amanitine, inhibitors of polymerase alpha and RNA polymerase, respectively. Subcellular quantification of primase and polymerase alpha activity revealed that while most (approximately 72%) primase activity is bound to the matrix, only a minority (approximately 32%) of polymerase alpha activity is matrix-bound. Treatment of the nuclear matrix with beta-D-octylglucoside allowed the solubilization of approximately 54% of primase activity and approximately 39% of the polymerase alpha activity. This data provides further evidence of a structural and functional role for the nuclear matrix in DNA replication. The ability to solubilize matrix-bound replicative enzymes may prove to be an important tool in the elucidation of the spatial organization of DNA replication.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验