基于聚亚胺苯并咪唑的纳米纤维材料作为锂离子电池分离膜的应用研究

Studies on the Application of Polyimidobenzimidazole Based Nanofiber Material as the Separation Membrane of Lithium-Ion Battery.

作者信息

Lu Yu-Hsiang, Huang Yu-Chang, Wang Yen-Zen, Ho Ko-Shan

机构信息

Department of Chemical and Materials Engineering, National Yu-Lin University of Science & Technology, 123, Sec. 3, University Rd., Douliu 64301, Taiwan.

Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan.

出版信息

Polymers (Basel). 2023 Apr 20;15(8):1954. doi: 10.3390/polym15081954.

Abstract

Aromatic polyimide has good mechanical properties and high-temperature resistance. Based on this, benzimidazole is introduced into the main chain, and its intermolecular (internal) hydrogen bond can increase mechanical and thermal properties and electrolyte wettability. Aromatic dianhydride 4,4'-oxydiphthalic anhydride (ODPA) and benzimidazole-containing diamine 6,6'-bis [2-(4-aminophenyl)benzimidazole] (BAPBI) were synthesized by means of a two-step method. Imidazole polyimide (BI-PI) was used to make a nanofiber membrane separator (NFMS) by electrospinning process, using its high porosity and continuous pore characteristics to reduce the ion diffusion resistance of the NFMS, enhancing the rapid charge and discharge performance. BI-PI has good thermal properties, with a Td5% of 527 °C and a dynamic mechanical analysis Tg of 395 °C. The tensile strength of the NFMS increased from 10.92MPa to 51.15MPa after being hot-pressed. BI-PI has good miscibility with LIB electrolyte, the porosity of the film is 73%, and the electrolyte absorption rate reaches 1454%. That explains the higher ion conductivity (2.02 mS cm) of NFMS than commercial one (0.105 mS cm). When applied to LIB, it is found that it has high cyclic stability and excellent rate performance at high current density (2 C). BI-PI (120 Ω) has a lower charge transfer resistance than the commercial separator Celgard H1612 (143 Ω).

摘要

芳香族聚酰亚胺具有良好的机械性能和耐高温性。基于此,将苯并咪唑引入主链,其分子间(内)氢键可提高机械性能、热性能和电解质润湿性。采用两步法合成了芳香族二酐4,4'-氧二邻苯二甲酸酐(ODPA)和含苯并咪唑的二胺6,6'-双[2-(4-氨基苯基)苯并咪唑](BAPBI)。通过静电纺丝工艺,使用咪唑聚酰亚胺(BI-PI)制备了纳米纤维膜分离器(NFMS),利用其高孔隙率和连续孔隙特性降低NFMS的离子扩散电阻,增强快速充放电性能。BI-PI具有良好的热性能,5%热失重温度(Td5%)为527℃,动态力学分析玻璃化转变温度(Tg)为395℃。热压后,NFMS的拉伸强度从10.92MPa提高到51.15MPa。BI-PI与锂离子电池电解质具有良好的混溶性,膜的孔隙率为73%,电解质吸收率达到1454%。这解释了NFMS比商用隔膜(0.105 mS/cm)具有更高的离子电导率(2.02 mS/cm)。当应用于锂离子电池时,发现它在高电流密度(2C)下具有高循环稳定性和优异的倍率性能。BI-PI(120Ω)的电荷转移电阻低于商用隔膜Celgard H1612(143Ω)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c909/10140945/151f546aeb20/polymers-15-01954-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索