Suppr超能文献

嵌入式传感器系统中数据质量融合的集成框架。

An Integrated Framework for Data Quality Fusion in Embedded Sensor Systems.

机构信息

Siemens AG, Technology, 91058 Erlangen, Germany.

Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany.

出版信息

Sensors (Basel). 2023 Apr 7;23(8):3798. doi: 10.3390/s23083798.

Abstract

The advancement of embedded sensor systems allowed the monitoring of complex processes based on connected devices. As more and more data are produced by these sensor systems, and as the data are used in increasingly vital areas of applications, it is of growing importance to also track the data quality of these systems. We propose a framework to fuse sensor data streams and associated data quality attributes into a single meaningful and interpretable value that represents the current underlying data quality. Based on the definition of data quality attributes and metrics to determine real-valued figures representing the quality of the attributes, the fusion algorithms are engineered. Methods based on maximum likelihood estimation (MLE) and fuzzy logic are used to perform data quality fusion by utilizing domain knowledge and sensor measurements. Two data sets are used to verify the proposed fusion framework. First, the methods are applied to a proprietary data set targeting sample rate inaccuracies of a micro-electro-mechanical system (MEMS) accelerometer and second, to the publicly available Intel Lab Data set. The algorithms are verified against their expected behavior based on data exploration and correlation analysis. We prove that both fusion approaches are capable of detecting data quality issues and providing an interpretable data quality indicator.

摘要

嵌入式传感器系统的发展使得基于连接设备的复杂过程监测成为可能。随着这些传感器系统产生的越来越多的数据,并且由于这些数据被应用于越来越重要的应用领域,跟踪这些系统的数据质量也变得越来越重要。我们提出了一个框架,将传感器数据流和相关的数据质量属性融合到一个单一的有意义且可解释的值中,该值代表当前的基础数据质量。基于确定代表属性质量的实值数字的定义的数据质量属性和指标,设计了融合算法。基于最大似然估计(MLE)和模糊逻辑的方法被用于通过利用领域知识和传感器测量来执行数据质量融合。使用了两个数据集来验证所提出的融合框架。首先,将方法应用于针对微机电系统(MEMS)加速度计的采样率不准确性的专有数据集,其次,将方法应用于公开可用的 Intel Lab 数据集。根据数据探索和相关分析,根据算法的预期行为对算法进行验证。我们证明了这两种融合方法都能够检测数据质量问题并提供可解释的数据质量指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1826/10140861/aea7b0134423/sensors-23-03798-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验