Suppr超能文献

微波反射计在未来核聚变装置等离子体位形控制中的进展、挑战和未来展望。

Advances, Challenges, and Future Perspectives of Microwave Reflectometry for Plasma Position and Shape Control on Future Nuclear Fusion Devices.

机构信息

Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.

Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching, Germany.

出版信息

Sensors (Basel). 2023 Apr 12;23(8):3926. doi: 10.3390/s23083926.

Abstract

Providing energy from fusion and finding ways to scale up the fusion process to commercial proportions in an efficient, economical, and environmentally benign way is one of the grand challenges for engineering. Controlling the burning plasma in real-time is one of the critical issues that need to be addressed. Plasma Position Reflectometry (PPR) is expected to have an important role in next-generation fusion machines, such as DEMO, as a diagnostic to monitor the position and shape of the plasma continuously, complementing magnetic diagnostics. The reflectometry diagnostic uses radar science methods in the microwave and millimetre wave frequency ranges and is envisaged to measure the radial edge density profile at several poloidal angles providing data for the feedback control of the plasma position and shape. While significant steps have already been given to accomplish that goal, with proof of concept tested first in ASDEX-Upgrade and afterward in COMPASS, important, ground-breaking work is still ongoing. The Divertor Test Tokamak (DTT) facility presents itself as the appropriate future fusion device to implement, develop, and test a PPR system, thus contributing to building a knowledge database in plasma position reflectometry required for its application in DEMO. At DEMO, the PPR diagnostic's in-vessel antennas and waveguides, as well as the magnetic diagnostics, may be exposed to neutron irradiation fluences 5 to 50 times greater than those experienced by ITER. In the event of failure of either the magnetic or microwave diagnostics, the equilibrium control of the DEMO plasma may be jeopardized. It is, therefore, imperative to ensure that these systems are designed in such a way that they can be replaced if necessary. To perform reflectometry measurements at the 16 envisaged poloidal locations in DEMO, plasma-facing antennas and waveguides are needed to route the microwaves between the plasma through the DEMO upper ports (UPs) to the diagnostic hall. The main integration approach for this diagnostic is to incorporate these groups of antennas and waveguides into a diagnostics slim cassette (DSC), which is a dedicated complete poloidal segment specifically designed to be integrated with the water-cooled lithium lead (WCLL) breeding blanket system. This contribution presents the multiple engineering and physics challenges addressed while designing reflectometry diagnostics using radio science techniques. Namely, short-range dedicated radars for plasma position and shape control in future fusion experiments, the advances enabled by the designs for ITER and DEMO, and the future perspectives. One key development is in electronics, aiming at an advanced compact coherent fast frequency sweeping RF back-end [23-100 GHz in few μs] that is being developed at IPFN-IST using commercial Monolithic Microwave Integrated Circuits (MMIC). The compactness of this back-end design is crucial for the successful integration of many measurement channels in the reduced space available in future fusion machines. Prototype tests of these devices are foreseen to be performed in current nuclear fusion machines.

摘要

从聚变中获取能量,并找到一种方法将聚变过程高效、经济且环境友好地扩展到商业规模,是工程学面临的重大挑战之一。实时控制燃烧等离子体是需要解决的关键问题之一。等离子体位置反射计(PPR)有望在下一代聚变装置(如 DEMO)中发挥重要作用,作为一种诊断工具,连续监测等离子体的位置和形状,与磁诊断互补。反射计诊断使用微波和毫米波频率范围内的雷达科学方法,预计可以在几个极向角度测量等离子体边缘密度分布,为等离子体位置和形状的反馈控制提供数据。虽然已经朝着实现这一目标迈出了重要的步伐,在 ASDEX-Upgrade 中首先进行了概念验证,随后在 COMPASS 中进行了验证,但仍在进行着重要的开创性工作。偏滤器试验托卡马克(DTT)装置本身就是一个合适的未来聚变装置,可以用来实现、开发和测试 PPR 系统,从而为在 DEMO 中应用等离子体位置反射计建立一个知识库做出贡献。在 DEMO 中,PPR 诊断的腔内天线和波导,以及磁诊断,可能会受到比 ITER 高 5 到 50 倍的中子辐照通量的影响。如果磁诊断或微波诊断出现故障,DEMO 等离子体的平衡控制可能会受到威胁。因此,必须确保这些系统的设计方式能够在必要时进行更换。为了在 DEMO 中设想的 16 个极向位置进行反射计测量,需要等离子体反射天线和波导将微波通过 DEMO 上部端口(UP)传输到诊断大厅。该诊断的主要集成方法是将这些天线和波导组集成到一个诊断苗条盒(DSC)中,这是一个专门设计的完整极向段,专门用于与水冷铅锂(WCLL)增殖包层系统集成。本贡献介绍了在使用射电科学技术设计反射计诊断时所面临的多个工程和物理挑战。即未来聚变实验中用于等离子体位置和形状控制的短程专用雷达、ITER 和 DEMO 设计带来的进步,以及未来的展望。一个关键的发展是在电子领域,旨在开发一种先进的紧凑相干快速频率扫描射频后端[几微秒内 23-100GHz],这是由 IPFN-IST 使用商业单片微波集成电路(MMIC)开发的。这种后端设计的紧凑性对于在未来聚变装置中可用空间有限的情况下成功集成许多测量通道至关重要。预计将在当前的核聚变机器上进行这些设备的原型测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede4/10142666/c6bb06181024/sensors-23-03926-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验