Suppr超能文献

《通往聚变能的欧洲路线图》

The European roadmap towards fusion electricity.

机构信息

EUROfusion, Programme Management Unit , Boltzmannstrasse 2, 85748 Garching , Garmany.

出版信息

Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170432. doi: 10.1098/rsta.2017.0432.

Abstract

The European roadmap to the realization of fusion electricity breaks the quest into eight missions. For each mission, it reviews the current status of research, identifies open issues, and proposes a research and development programme. ITER is the key facility on the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. The Fusion Roadmap is tightly connected to the ITER schedule and the vast majority of resources in fusion research are presently dedicated to ITER and its accompanying experiments. Parallel to the ITER exploitation in the 2030s, the construction of the demonstration power plant DEMO needs to be prepared. DEMO will for the first time supply fusion electricity to the grid and it will have a self-sufficient fuel cycle. The design, construction and operation of DEMO require full involvement of industry to ensure that, after a successful DEMO operation, industry can take responsibility for commercial fusion power. The European fusion roadmap provides a coherent path towards the fusion power plant, and it proposes in an integrated way to find solutions for all challenges that still need to be addressed. This article is part of a discussion meeting issue 'Fusion energy using tokamaks: can development be accelerated?'

摘要

欧洲实现聚变能路线图将这一探索分为八项任务。对于每项任务,它都回顾了当前的研究状况,确定了未解决的问题,并提出了研究和开发计划。ITER 是路线图上的关键设施,因为它有望在通向聚变能的道路上实现大多数重要的里程碑。聚变路线图与 ITER 时间表紧密相连,目前,聚变研究的大部分资源都专门用于 ITER 及其伴随的实验。在 2030 年代 ITER 开发的同时,需要准备示范电厂 DEMO 的建设。DEMO 将首次向电网供应聚变电力,并将拥有自给自足的燃料循环。DEMO 的设计、建设和运行需要工业界的全面参与,以确保在成功运行 DEMO 后,工业界能够承担商业聚变能的责任。欧洲聚变路线图为聚变电厂提供了一条连贯的道路,并以综合的方式提出了解决所有仍需解决的挑战的方案。本文是“使用托卡马克的聚变能:能否加速开发?”讨论会议的一部分。

相似文献

1
The European roadmap towards fusion electricity.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170432. doi: 10.1098/rsta.2017.0432.
2
Beyond ITER: neutral beams for a demonstration fusion reactor (DEMO) (invited).
Rev Sci Instrum. 2014 Feb;85(2):02B319. doi: 10.1063/1.4852299.
3
An economical viable tokamak fusion reactor based on the ITER experience.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170433. doi: 10.1098/rsta.2017.0433.
4
Towards a compact spherical tokamak fusion pilot plant.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170439. doi: 10.1098/rsta.2017.0439.
6
Nuclear power in the 21st century: Challenges and possibilities.
Ambio. 2016 Jan;45 Suppl 1(Suppl 1):S38-49. doi: 10.1007/s13280-015-0732-y.
7
UKAEA capabilities to address the challenges on the path to delivering fusion power.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170436. doi: 10.1098/rsta.2017.0436.
8
A research roadmap for complementary and alternative medicine - what we need to know by 2020.
Forsch Komplementmed. 2014;21(2):e1-16. doi: 10.1159/000360744. Epub 2014 Mar 24.
9
Can the development of fusion energy be accelerated? An introduction to the proceedings.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170446. doi: 10.1098/rsta.2017.0446.
10
Recent progress in Chinese fusion research based on superconducting tokamak configuration.
Innovation (Camb). 2022 Jun 11;3(4):100269. doi: 10.1016/j.xinn.2022.100269. eCollection 2022 Jul 12.

引用本文的文献

3
Neutronics Simulations for DEMO Diagnostics.
Sensors (Basel). 2023 May 26;23(11):5104. doi: 10.3390/s23115104.
5
On the size of tokamak fusion power plants.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170437. doi: 10.1098/rsta.2017.0437.
6
Can the development of fusion energy be accelerated? An introduction to the proceedings.
Philos Trans A Math Phys Eng Sci. 2019 Mar 25;377(2141):20170446. doi: 10.1098/rsta.2017.0446.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验