Suppr超能文献

基于 AI 的 SMILES 药物相互作用预测模型在骨质疏松症和 Pagets 病中的应用

An AI-based Prediction Model for Drug-drug Interactions in Osteoporosis and Paget's Diseases from SMILES.

机构信息

International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.

Department of Orthopedic and Trauma, Cho Ray Hospital, Ho Chi Minh City, Vietnam.

出版信息

Mol Inform. 2022 Jun;41(6):e2100264. doi: 10.1002/minf.202100264. Epub 2022 Jan 22.

Abstract

The skeleton is one of the most important organs in the human body in assisting our motion and activities; however, bone density attenuates gradually as we age. Among common bone diseases are osteoporosis and Paget's, two of the most frequently found diseases in the elderly. Nowadays, a combination of multiple drugs is the optimal therapy to decelerate osteoporosis and Paget's pathologic process, which comes with various underlying adverse effects due to drug-drug interactions (DDIs). Artificial intelligence (AI) has the potential to evaluate the interaction, pharmacodynamics, and possible side effects between drugs. In this research, we created an AI-based machine-learning model to predict the outcomes of interactions between drugs used for osteoporosis and Paget's treatment, which helps mitigate the cost and time to implement the best combination of medications in clinical practice. In this study, a DDI dataset was collected from the DrugBank database within the osteoporosis and Paget diseases. We then extracted a variety of chemical features from the simplified molecular-input line-entry system (SMILES) of defined drug pairs that interact with each other. Finally, machine-learning algorithms were implemented to learn the extracted features. Our stack ensemble model from Random Forest and XGBoost reached an average accuracy of 74 % in predicting DDIs. It was superior to individual models as well as previous methods in terms of most measurement metrics. This study showed the potential of AI models in predicting DDIs of Osteoporosis-Paget's disease in particular, and other diseases in general.

摘要

骨骼是人体协助运动和活动的最重要器官之一;然而,随着年龄的增长,骨密度逐渐减弱。骨质疏松症和 Pagets 病是常见的骨骼疾病,是老年人最常见的两种疾病。如今,多种药物联合治疗是减缓骨质疏松症和 Pagets 病病理过程的最佳疗法,由于药物-药物相互作用(DDIs),会带来各种潜在的不良反应。人工智能(AI)有潜力评估药物之间的相互作用、药效学和可能的副作用。在这项研究中,我们创建了一个基于人工智能的机器学习模型,以预测用于治疗骨质疏松症和 Pagets 病的药物相互作用的结果,这有助于降低在临床实践中实施最佳药物组合的成本和时间。在这项研究中,从骨质疏松症和 Pagets 疾病的 DrugBank 数据库中收集了 DDI 数据集。然后,我们从相互作用的定义药物对的简化分子输入行系统(SMILES)中提取了各种化学特征。最后,实施了机器学习算法来学习提取的特征。我们的随机森林和 XGBoost 堆叠集成模型在预测 DDI 方面的平均准确率达到了 74%。在大多数测量指标方面,它优于单个模型和以前的方法。这项研究表明,人工智能模型在预测特定的骨质疏松症-Paget 病药物相互作用方面具有潜力,在预测其他疾病方面也具有潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验