Suppr超能文献

基于深度强化学习的狭窄空间自动泊车分层轨迹规划:联邦学习方案。

Hierarchical Trajectory Planning for Narrow-Space Automated Parking with Deep Reinforcement Learning: A Federated Learning Scheme.

机构信息

School of Artificial Intelligence, Beijing University of Posts and Telecommunications, 10 Xitucheng Road, Haidian Distinct, Beijing 100876, China.

Centre for Telecommunications Research, King's College London, London WC2R 2LS, UK.

出版信息

Sensors (Basel). 2023 Apr 18;23(8):4087. doi: 10.3390/s23084087.

Abstract

Collision-free trajectory planning in narrow spaces has become one of the most challenging tasks in automated parking scenarios. Previous optimization-based approaches can generate accurate parking trajectories, but these methods cannot compute feasible solutions with extremely complex constraints in a limited time. Recent research uses neural-network-based approaches that can generate time-optimized parking trajectories in linear time. However, the generalization of these neural network models in different parking scenarios has not been considered thoroughly and the risk of privacy compromise exists in the case of centralized training. To address the above issues, this paper proposes a ierarchical trjectory panning method with deep reinfrcement learning in the fderated learning cheme (HALOES) to rapidly and accurately generate collision-free automated parking trajectories in multiple narrow spaces. HALOES is a federated learning based hierarchical trajectory planning method to fully exert high-level deep reinforcement learning and the low-level optimization-based approach. HALOES further fuse the deep reinforcement learning model parameters to improve the generalization capabilities with a decentralized training scheme. The federated learning scheme in HALOES aims to protect the privacy of the vehicle's data during model parameter aggregation. Simulation results show that the proposed method can achieve efficient automatic parking in multiple narrow spaces, improve planning time from 12.15% to 66.02% compared to other state-of-the-art methods (e.g., hybrid A*, OBCA) and maintain the same level of trajectory accuracy while having great model generalization.

摘要

在狭窄空间中进行无碰撞轨迹规划已成为自动泊车场景中最具挑战性的任务之一。基于优化的先前方法可以生成精确的停车轨迹,但这些方法无法在有限的时间内计算出具有极其复杂约束的可行解决方案。最近的研究使用基于神经网络的方法,可以在线性时间内生成时间优化的停车轨迹。然而,这些神经网络模型在不同的停车场景中的泛化尚未得到充分考虑,并且在集中式训练的情况下存在隐私泄露的风险。为了解决上述问题,本文提出了一种分层轨迹规划方法,该方法在联邦学习方案(HALOES)中结合了深度强化学习,以快速准确地生成多个狭窄空间中的无碰撞自动泊车轨迹。HALOES 是一种基于联邦学习的分层轨迹规划方法,可充分发挥高级深度强化学习和低级基于优化的方法的作用。HALOES 进一步融合了深度强化学习模型参数,通过分散式训练方案提高了泛化能力。HALOES 中的联邦学习方案旨在在模型参数聚合过程中保护车辆数据的隐私。仿真结果表明,与其他最先进的方法(例如,混合 A*,OBCA)相比,所提出的方法可以在多个狭窄空间中实现高效的自动泊车,规划时间从 12.15%提高到 66.02%,同时保持相同的轨迹精度水平,具有很强的模型泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fd0/10143055/902910c1d5a5/sensors-23-04087-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验