Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul 03080, South Korea.
Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea.
Eur Heart J Cardiovasc Imaging. 2023 Aug 23;24(9):1156-1165. doi: 10.1093/ehjci/jead077.
The outcomes of mitral valve replacement/repair (MVR) in severe degenerative mitral regurgitation (MR) patients depend on various risk factors. We aimed to develop a risk prediction model for post-MVR mortality in severe degenerative MR patients using machine learning.
Consecutive severe degenerative MR patients undergoing MVR were analysed (n = 1521; 70% training/30% test sets). A random survival forest (RSF) model was constructed, with 3-year post-MVR all-cause mortality as the outcome. Partial dependency plots were used to define the thresholds of each risk factor. A simple scoring system (MVR-score) was developed to stratify post-MVR mortality risk. At 3 years following MVR, 90 patients (5.9%) died in the entire cohort (59 and 31 deaths in the training and test sets). The most important predictors of mortality in order of importance were age, haemoglobin, valve replacement, glomerular filtration rate, left atrial dimension, and left ventricular (LV) end-systolic diameter. The final RSF model with these six variables demonstrated high predictive performance in the test set (3-year C-index 0.880, 95% confidence interval 0.834-0.925), with mortality risk increased strongly with left atrial dimension >55 mm, and LV end-systolic diameter >45 mm. MVR-score demonstrated effective risk stratification and had significantly higher predictability compared to the modified Mitral Regurgitation International Database score (3-year C-index 0.803 vs. 0.750, P = 0.034).
A data-driven machine learning model provided accurate post-MVR mortality prediction in severe degenerative MR patients. The outcome following MVR in severe degenerative MR patients is governed by both clinical and echocardiographic factors.
二尖瓣置换/修复(MVR)治疗重度退行性二尖瓣反流(MR)患者的结局取决于多种危险因素。我们旨在使用机器学习为重度退行性 MR 患者 MVR 后死亡率建立风险预测模型。
分析了连续接受 MVR 治疗的重度退行性 MR 患者(n=1521;70%训练/30%测试集)。构建了一个随机生存森林(RSF)模型,以 MVR 后 3 年全因死亡率为结局。使用部分依赖图来定义每个危险因素的阈值。开发了一种简单的评分系统(MVR 评分)来分层 MVR 后死亡率风险。MVR 后 3 年,整个队列中有 90 例患者(5.9%)死亡(训练集和测试集中分别有 59 例和 31 例死亡)。死亡率最重要的预测因素按重要性顺序依次为年龄、血红蛋白、瓣膜置换、肾小球滤过率、左心房内径和左心室(LV)收缩末期直径。最终的 RSF 模型包含这 6 个变量,在测试集中具有较高的预测性能(3 年 C 指数 0.880,95%置信区间 0.834-0.925),随着左心房内径>55mm 和 LV 收缩末期直径>45mm,死亡率风险显著增加。MVR 评分能够有效地进行风险分层,与改良的二尖瓣反流国际数据库评分相比,具有更高的预测能力(3 年 C 指数 0.803 与 0.750,P=0.034)。
数据驱动的机器学习模型为重度退行性 MR 患者 MVR 后死亡率提供了准确的预测。重度退行性 MR 患者 MVR 后的结局受临床和超声心动图因素的共同影响。