Yadav Pooja, Pandey Shraddha, Dubey Santosh Kumar
G. E. Fogg Laboratory of Algal Biology, CAS in Botany, Banaras Hindu University, Varanasi, 221005, U.P, India.
Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
Biometals. 2023 Oct;36(5):1027-1045. doi: 10.1007/s10534-023-00503-y. Epub 2023 Apr 29.
Environmental bacterial isolates play a very important role in bioremediation of metals and toxic metalloids. A bacterial strain with high selenite (SeO) tolerance and reducing capability was isolated from electronic waste dump site in Banaras Hindu University, Varanasi, India. Based on 16 S rRNA sequencing and BLAST search, this bacterial isolate was identified as Bacillus paramycoides and designated as strain MF-14. It tolerated Sodium selenite up to 110 mM when grown aerobically in LB broth and reduced selenite into elemental selenium (Se) significantly within 24 h with concomitant biosynthesis of selenium nanoparticles as clearly revealed by brick red precipitate and specific surface plasmon resonance peak at 210 nm using UV-Visible spectrophotometer. Scanning electron microscopy (SEM) analysis of this bacterial strain exposed to 1mM and 5 mM selenite also demonstrated morphological alterations as cell enlargement due to accumulation and bioprecipitation of elemental selenium (Se). The FTIR analysis clearly demonstrated that functional groups present on the surface of biogenic selenium nanoparticles (SeNPs) play a significant role in the stabilization and capping of SeNPs. Furthermore, these SeNPs were characterized using spectroscopic analysis involving Dynamic light scattering, zeta potential, XPS, FTIR, XRD and Raman spectroscopy which clearly revealed particle size 10-700 nm, amorphous nature, stability as well as it's oxidation state. The biochemical studies have demonstrated that membrane bound reductase enzyme may be responsible for significant reduction of selenite into elemental selenium. Therefore, we may employ Bacillus paramycoides strain MF-14 successfully for bioremediation of selenite contaminated environmental sites with concomitant green synthesis of SeNPs.
环境细菌分离株在金属和有毒类金属的生物修复中发挥着非常重要的作用。从印度瓦拉纳西贝拿勒斯印度大学的电子垃圾倾倒场分离出一株对亚硒酸盐(SeO)具有高耐受性和还原能力的细菌菌株。基于16S rRNA测序和BLAST搜索,该细菌分离株被鉴定为副蕈状芽孢杆菌,并命名为MF-14菌株。当在LB肉汤中好氧生长时,它能耐受高达110 mM的亚硒酸钠,并在24小时内将亚硒酸盐显著还原为元素硒(Se),同时生物合成硒纳米颗粒,这通过砖红色沉淀以及使用紫外可见分光光度计在210 nm处的特定表面等离子体共振峰清晰显示。对暴露于1 mM和5 mM亚硒酸盐的该细菌菌株进行扫描电子显微镜(SEM)分析也表明,由于元素硒(Se)的积累和生物沉淀,细胞形态发生改变,细胞增大。傅里叶变换红外光谱(FTIR)分析清楚地表明,生物源硒纳米颗粒(SeNPs)表面存在的官能团在SeNPs的稳定和封端中起重要作用。此外,使用包括动态光散射、zeta电位、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)和拉曼光谱在内的光谱分析对这些SeNPs进行了表征,结果清楚地显示了其粒径为10 - 700 nm、无定形性质、稳定性及其氧化态。生化研究表明,膜结合还原酶可能是将亚硒酸盐显著还原为元素硒的原因。因此,我们可以成功地利用副蕈状芽孢杆菌MF-14菌株对受亚硒酸盐污染的环境场地进行生物修复,同时绿色合成SeNPs。