Suppr超能文献

双分子协同限制在富边缘氧石墨烯片之间作为超级电容器的超高倍率和稳定电极。

Dual Molecules Cooperatively Confined In-Between Edge-oxygen-rich Graphene Sheets as Ultrahigh Rate and Stable Electrodes for Supercapacitors.

作者信息

Qiu Zhipeng, Liu Zheng, Lu Xiaolong, Zhang Su, Yan Yingchun, Chi Chunlei, Huangfu Chao, Wang Guanwen, Gao Pengfei, Chi Weihao, Xu Zheng, Wei Tong, Fan Zhuangjun

机构信息

School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China.

出版信息

Small. 2023 Sep;19(36):e2302316. doi: 10.1002/smll.202302316. Epub 2023 Apr 29.

Abstract

Noncovalent modification of carbon materials with redox-active organic molecules has been considered as an effective strategy to improve the electrochemical performance of supercapacitors. However, their low loading mass, slow electron transfer rate, and easy dissolution into the electrolyte greatly limit further practical applications. Herein, this work reports dual molecules (1,5-dihydroxyanthraquinone (DHAQ) and 2,6-diamino anthraquinone (DAQ)) cooperatively confined in-between edge-oxygen-rich graphene sheets as high-performance electrodes for supercapacitors. Cooperative electrostatic-interaction on the edge-oxygen sites and π-π interaction in-between graphene sheets lead to the increased loading mass and structural stability of dual molecules. Moreover, the electron tunneling paths constructed between edge-oxygen groups and dual molecules can effectively boost the electron transfer rate and redox reaction kinetics, especially at ultrahigh current densities. As a result, the as-obtained electrode exhibits a high capacitance of 507 F g at 0.5 A g , and an unprecedented rate capability (203 F g at 200 A g ). Moreover, the assembled symmetrical supercapacitor achieves a high energy density of 17.1 Wh kg and an ultrahigh power density of 140 kW kg , as well as remarkable stability with a retention of 86% after 50 000 cycles. This work may open a new avenue for the efficient utilization of organic materials in energy storage and conversion.

摘要

用具有氧化还原活性的有机分子对碳材料进行非共价修饰被认为是提高超级电容器电化学性能的有效策略。然而,它们的低负载质量、缓慢的电子转移速率以及容易溶解到电解质中,极大地限制了其进一步的实际应用。在此,本文报道了双分子(1,5-二羟基蒽醌(DHAQ)和2,6-二氨基蒽醌(DAQ))协同限制在富边缘氧的石墨烯片层之间,作为超级电容器的高性能电极。边缘氧位点上的协同静电相互作用以及石墨烯片层之间的π-π相互作用导致双分子的负载质量增加和结构稳定性提高。此外,在边缘氧基团和双分子之间构建的电子隧穿路径可以有效地提高电子转移速率和氧化还原反应动力学,特别是在超高电流密度下。结果,所制备的电极在0.5 A g时表现出507 F g的高电容,以及前所未有的倍率性能(在200 A g时为203 F g)。此外,组装的对称超级电容器实现了17.1 Wh kg的高能量密度和140 kW kg的超高功率密度,以及出色的稳定性,在50000次循环后保持率为86%。这项工作可能为有机材料在能量存储和转换中的高效利用开辟一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验