Fan Zhimin, Wang Youshan, Xie Zhimin, Wang Duola, Yuan Yin, Kang Hongjun, Su Benlong, Cheng Zhongjun, Liu Yuyan
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China.
National Key Laboratory of Science and Technology on Advanced Composites in Special Environments Harbin Institute of Technology Harbin 150080 P. R. China.
Adv Sci (Weinh). 2018 Aug 17;5(10):1800750. doi: 10.1002/advs.201800750. eCollection 2018 Oct.
MXene films are attractive for advanced supercapacitor electrodes requiring high volumetric energy density due to their high redox capacitance combined with extremely high packing density. However, the self-restacking of MXene flakes unavoidably decreases the volumetric performance, mass loading, and rate capability. Herein, a simple strategy is developed to prepare a flexible and free-standing modified MXene/holey graphene film by filtration of the alkalized MXene and holey graphene oxide dispersions, followed by a mild annealing treatment. After terminal groups (-F/-OH) are removed, the increased proportion of Ti atoms enables more pseudocapacitive reaction. Meanwhile, the embedded holey graphene effectively prevents the self-restacking of MXene and forms a high nanopore connectivity network, which is able to immensely accelerate the ion transport and shorten transport pathways for both ion and electron. When applied as electrode materials for supercapacitors, it can deliver an ultrahigh volumetric capacitance (1445 F cm) at 2 mV s, excellent rate capability, and high mass loading. In addition, the assembled symmetric supercapacitor demonstrates a fantastic volumetric energy density (38.6 Wh L), which is the highest value reported for MXene-based electrodes in aqueous electrolytes. This work opens a new avenue for the further exploration of MXene materials in energy storage devices.
MXene薄膜因其高氧化还原电容与极高的堆积密度相结合,对于需要高体积能量密度的先进超级电容器电极具有吸引力。然而,MXene薄片的自堆叠不可避免地会降低体积性能、质量负载和倍率性能。在此,开发了一种简单的策略,通过过滤碱化的MXene和多孔氧化石墨烯分散体,然后进行温和的退火处理,来制备柔性且自支撑的改性MXene/多孔石墨烯薄膜。去除端基(-F/-OH)后,Ti原子比例的增加使得更多的赝电容反应得以发生。同时,嵌入的多孔石墨烯有效地防止了MXene的自堆叠,并形成了高纳米孔连通网络,这能够极大地加速离子传输并缩短离子和电子的传输路径。当用作超级电容器的电极材料时,它在2 mV s下可提供超高的体积电容(1445 F cm)、优异的倍率性能和高的质量负载。此外,组装的对称超级电容器展现出出色的体积能量密度(38.6 Wh L),这是水性电解质中基于MXene的电极所报道的最高值。这项工作为在储能器件中进一步探索MXene材料开辟了一条新途径。